BIFIE.data
Object with Jackknife ZonesBIFIE.data.jack.Rd
Creates a BIFIE.data
object for designs with jackknife zones,
especially for TIMSS/PIRLS and PISA studies.
BIFIE.data.jack(data, wgt=NULL, jktype="JK_TIMSS", pv_vars=NULL,
jkzone=NULL, jkrep=NULL, jkfac=NULL, fayfac=NULL,
wgtrep="W_FSTR", pvpre=paste0("PV",1:5), ngr=100,
seed=.Random.seed, cdata=FALSE)
Data frame: Can be a single or a list of multiply-imputed datasets
A string indicating the label of case weight.
In case of jktype="JK_TIMSS"
the weight is specified as
wgt="TOTWGT"
as the default.
An optional vector of plausible values which define multiply-imputed datasets.
Type of jackknife procedure for creating the BIFIE.data
object.
jktype="JK_TIMSS"
refers to TIMSS/PIRLS datasets up to 2011 data,
jktype="JK_TIMSS2"
refers to TIMSS/PIRLS datasets starting from 2015 data. The type
"JK_GROUP"
creates jackknife weights based on a user defined
grouping, the type "JK_RANDOM"
creates random groups. The number
of random groups can be defined in ngr
. The argument jktype="RW_PISA"
converts PISA datasets into objects of class BIFIEdata
.
Jackknife zones. If jktype="JK_TIMSS"
, then jkzone="JKZONE"
.
Jackknife replicate factors. If jktype="JK_TIMSS"
, then jkrep="JKREP"
.
Factor for multiplying jackknife replicate weights.
If jktype="JK_TIMSS"
, then jkfac=2
.
Fay factor for statistical inference. The default is set to NULL
.
Variables in the dataset which refer to the replicate
weights. In case of cdata=TRUE
, the replicate weights
are deleted from datalistM
.
Only applicable for jktype="RW_PISA"
. The vector contains
the prefixes of the variables containing plausible values.
Number of randomly created groups in "JK_RANDOM"
.
The simulation seed if "JK_RANDOM"
is chosen.
If seed=NULL
, then the grouping is done according the
order in the dataset.
An optional logical indicating whether the BIFIEdata
object should be compactly saved. The default is FALSE
.
Object of class BIFIEdata
#############################################################################
# EXAMPLE 1: Convert TIMSS dataset to BIFIE.data object
#############################################################################
data(data.timss3)
# define plausible values
pv_vars <- c("ASMMAT", "ASSSCI" )
# create BIFIE.data objects -> 5 imputed datasets
bdat1 <- BIFIEsurvey::BIFIE.data.jack( data=data.timss3, pv_vars=pv_vars,
jktype="JK_TIMSS" )
summary(bdat1)
# create BIFIE.data objects -> all PVs are included in one dataset
bdat2 <- BIFIEsurvey::BIFIE.data.jack( data=data.timss3, jktype="JK_TIMSS" )
summary(bdat2)
#############################################################################
# EXAMPLE 2: Creation of Jackknife zones and replicate weights for data.test1
#############################################################################
data(data.test1)
# create jackknife zones based on random group creation
bdat1 <- BIFIEsurvey::BIFIE.data.jack( data=data.test1, jktype="JK_RANDOM",
ngr=50 )
summary(bdat1)
stat1 <- BIFIEsurvey::BIFIE.univar( bdat1, vars="math", group="stratum" )
summary(stat1)
# random creation of groups and inclusion of weights
bdat2 <- BIFIEsurvey::BIFIE.data.jack( data=data.test1, jktype="JK_RANDOM",
ngr=75, seed=987, wgt="wgtstud")
summary(bdat2)
stat2 <- BIFIEsurvey::BIFIE.univar( bdat2, vars="math", group="stratum" )
summary(stat2)
# using idclass as jackknife zones
bdat3 <- BIFIEsurvey::BIFIE.data.jack( data=data.test1, jktype="JK_GROUP",
jkzone="idclass", wgt="wgtstud")
summary(bdat3)
stat3 <- BIFIEsurvey::BIFIE.univar( bdat3, vars="math", group="stratum" )
summary(stat3)
# create BIFIEdata object with a list of imputed datasets
dataList <- list( data.test1, data.test1, data.test1 )
bdat4 <- BIFIEsurvey::BIFIE.data.jack( data=dataList, jktype="JK_GROUP",
jkzone="idclass", wgt="wgtstud")
summary(bdat4)
if (FALSE) {
#############################################################################
# EXAMPLE 3: Converting a PISA dataset into a BIFIEdata object
#############################################################################
data(data.pisaNLD)
# BIFIEdata with cdata=FALSE
bifieobj <- BIFIEsurvey::BIFIE.data.jack( data.pisaNLD, jktype="RW_PISA", cdata=FALSE)
summary(bifieobj)
# BIFIEdata with cdata=TRUE
bifieobj1 <- BIFIEsurvey::BIFIE.data.jack( data.pisaNLD, jktype="RW_PISA", cdata=TRUE)
summary(bifieobj1)
}