BIFIE.mva.Rd
Conducts a missing value analysis.
BIFIE.mva( BIFIEobj, missvars, covariates=NULL, se=TRUE )
# S3 method for BIFIE.mva
summary(object,digits=4,...)
Object of class BIFIEdata
Vector of variables for which missing value statistics should be computed
Vector of variables which work as covariates
Optional logical indicating whether statistical inference based on replication should be employed.
Object of class BIFIE.correl
Number of digits for rounding output
Further arguments to be passed
A list with following entries
Data frame with missing value statistics
List with extensive output split
according to each variable in missvars
More values
#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################
data(data.timss1)
data(data.timssrep)
# create BIFIE.dat object
BIFIEdata <- BIFIEsurvey::BIFIE.data( data.list=data.timss1,
wgt=data.timss1[[1]]$TOTWGT, wgtrep=data.timssrep[, -1 ] )
# missing value analysis for "scsci" and "books" and three covariates
res1 <- BIFIEsurvey::BIFIE.mva( BIFIEdata, missvars=c("scsci", "books" ),
covariates=c("ASMMAT", "female", "ASSSCI") )
summary(res1)
# missing value analysis without statistical inference and without covariates
res2 <- BIFIEsurvey::BIFIE.mva( BIFIEdata, missvars=c("scsci", "books"), se=FALSE)
summary(res2)