cfa
Object in lavaancfa.extract.itempars.Rd
This function extract item parameters from a fitted
lavaan::cfa
object in lavaan. It
extract item loadings, item intercepts and the mean
and covariance matrix of latent variables in a
confirmatory factor analysis model.
cfa.extract.itempars(object)
Fitted cfa
object
List with following entries
Matrix of item loadings
Vector of item intercepts
Residual covariance matrix
Covariance matrix of latent variables
Vector of means of latent variables
Further values
See IRTLikelihood.cfa
for extracting the
individual likelihood from fitted confirmatory
factor analyses.
#############################################################################
# EXAMPLE 1: CFA data.Students
#############################################################################
library(lavaan)
library(CDM)
data(data.Students, package="CDM")
dat <- data.Students
dat1 <- dat[, paste0( "mj", 1:4 ) ]
#*** Model 1: Unidimensional model scale mj
lavmodel <- "
mj=~ mj1 + mj2 + mj3 + mj4
mj ~~ mj
"
mod1 <- lavaan::cfa( lavmodel, data=dat1, std.lv=TRUE )
summary(mod1, standardized=TRUE, rsquare=TRUE )
# extract parameters
res1 <- TAM::cfa.extract.itempars( mod1 )
if (FALSE) {
#*** Model 2: Scale mj - explicit modelling of item intercepts
lavmodel <- "
mj=~ mj1 + mj2 + mj3 + mj4
mj ~~ mj
mj1 ~ 1
"
mod2 <- lavaan::cfa( lavmodel, data=dat1, std.lv=TRUE )
summary(mod2, standardized=TRUE, rsquare=TRUE )
res2 <- TAM::cfa.extract.itempars( mod2 )
#*** Model 3: Tau-parallel measurements scale mj
lavmodel <- "
mj=~ a*mj1 + a*mj2 + a*mj3 + a*mj4
mj ~~ 1*mj
mj1 ~ b*1
mj2 ~ b*1
mj3 ~ b*1
mj4 ~ b*1
"
mod3 <- lavaan::cfa( lavmodel, data=dat1, std.lv=TRUE )
summary(mod3, standardized=TRUE, rsquare=TRUE )
res3 <- TAM::cfa.extract.itempars( mod3 )
#*** Model 4: Two-dimensional CFA with scales mj and sc
dat2 <- dat[, c(paste0("mj",1:4), paste0("sc",1:4)) ]
# lavaan model with shortage "__" operator
lavmodel <- "
mj=~ mj1__mj4
sc=~ sc1__sc4
mj ~~ sc
mj ~~ 1*mj
sc ~~ 1*sc
"
lavmodel <- TAM::lavaanify.IRT( lavmodel, data=dat2 )$lavaan.syntax
cat(lavmodel)
mod4 <- lavaan::cfa( lavmodel, data=dat2, std.lv=TRUE )
summary(mod4, standardized=TRUE, rsquare=TRUE )
res4 <- TAM::cfa.extract.itempars( mod4 )
}