designMatrices.RdGenerate design matrices, and display them at console.
designMatrices(modeltype=c("PCM", "RSM"), maxKi=NULL, resp=resp,
    ndim=1, A=NULL, B=NULL, Q=NULL, R=NULL, constraint="cases",...)
# S3 method for designMatrices
print(x, ...)
designMatrices.mfr(resp, formulaA=~ item + item:step, facets=NULL,
    constraint=c("cases", "items"), ndim=1, Q=NULL, A=NULL, B=NULL,
    progress=FALSE)
designMatrices.mfr2(resp, formulaA=~ item + item:step, facets=NULL,
    constraint=c("cases", "items"), ndim=1, Q=NULL, A=NULL, B=NULL,
    progress=FALSE)
.A.matrix(resp, formulaA=~ item + item*step, facets=NULL,
    constraint=c("cases", "items"), progress=FALSE, maxKi=NULL)
rownames.design(X)
.A.PCM2( resp, Kitem=NULL, constraint="cases", Q=NULL)
   # generates ConQuest parametrization of partial credit model
.A.PCM3( resp, Kitem=NULL ) # parametrization for A matrix in the dispersion modelType of item response model. Until now, the
     partial credit model (PCM; 'item+item*step') and
     the rating scale model (RSM; 'item+step') is implemented.
A vector containing the maximum score per item
Data frame of item responses
Number of dimensions
The design matrix for linking item category parameters to generalized item parameters \(\xi\).
The scoring matrix of item categories on \(\theta\) dimensions.
A loading matrix of items on dimensions with number of rows equal the number of items and the number of columns equals the number of dimensions in the item response model.
This argument is not used
Object generated by designMatrices. This argument is used in
     print.designMatrices and rownames.design.
Object generated by designMatrices. This argument is used in
     print.designMatrices and rownames.design.
An R formula object for generating the A design matrix.
    Variables in formulaA have to be included in facets.
A data frame with observed facets. The number of rows must be equal
    to the number of rows in resp.
Constraint in estimation: cases assumes zero means
    of trait distributions and items a sum constraint of
    zero of item parameters
Maximum number of categories per item
Display progress for creation of design matrices
Further arguments
The function .A.PCM2 generates the Conquest parametrization
of the partial credit model.
The function .A.PCM3 generates the parametrization for the \(A\)
design matrix in the dispersion model for ordered data (Andrich, 1982).
Andrich, D. (1982). An extension of the Rasch model for ratings providing both location and dispersion parameters. Psychometrika, 47(1), 105-113. doi:10.1007/BF02293856
The function designMatrices.mfr2 handles multi-faceted design for
items with differing number of response options.
See data.sim.mfr for some examples for creating design matrices.
###########################################################
# different parametrizations for ordered data
data( data.gpcm )
resp <- data.gpcm
# parametrization for partial credit model
A1 <- TAM::designMatrices( resp=resp )$A
# item difficulty and threshold parametrization
A2 <- TAM::.A.PCM2( resp )
# dispersion model of Andrich (1982)
A3 <- TAM::.A.PCM3( resp )
# rating scale model
A4 <- TAM::designMatrices( resp=resp, modeltype="RSM" )$A