designMatrices.Rd
Generate design matrices, and display them at console.
designMatrices(modeltype=c("PCM", "RSM"), maxKi=NULL, resp=resp,
ndim=1, A=NULL, B=NULL, Q=NULL, R=NULL, constraint="cases",...)
# S3 method for designMatrices
print(x, ...)
designMatrices.mfr(resp, formulaA=~ item + item:step, facets=NULL,
constraint=c("cases", "items"), ndim=1, Q=NULL, A=NULL, B=NULL,
progress=FALSE)
designMatrices.mfr2(resp, formulaA=~ item + item:step, facets=NULL,
constraint=c("cases", "items"), ndim=1, Q=NULL, A=NULL, B=NULL,
progress=FALSE)
.A.matrix(resp, formulaA=~ item + item*step, facets=NULL,
constraint=c("cases", "items"), progress=FALSE, maxKi=NULL)
rownames.design(X)
.A.PCM2( resp, Kitem=NULL, constraint="cases", Q=NULL)
# generates ConQuest parametrization of partial credit model
.A.PCM3( resp, Kitem=NULL ) # parametrization for A matrix in the dispersion model
Type of item response model. Until now, the
partial credit model (PCM
; 'item+item*step'
) and
the rating scale model (RSM
; 'item+step'
) is implemented.
A vector containing the maximum score per item
Data frame of item responses
Number of dimensions
The design matrix for linking item category parameters to generalized item parameters \(\xi\).
The scoring matrix of item categories on \(\theta\) dimensions.
A loading matrix of items on dimensions with number of rows equal the number of items and the number of columns equals the number of dimensions in the item response model.
This argument is not used
Object generated by designMatrices
. This argument is used in
print.designMatrices
and rownames.design
.
Object generated by designMatrices
. This argument is used in
print.designMatrices
and rownames.design
.
An R formula object for generating the A
design matrix.
Variables in formulaA
have to be included in facets
.
A data frame with observed facets. The number of rows must be equal
to the number of rows in resp
.
Constraint in estimation: cases
assumes zero means
of trait distributions and items
a sum constraint of
zero of item parameters
Maximum number of categories per item
Display progress for creation of design matrices
Further arguments
The function .A.PCM2
generates the Conquest parametrization
of the partial credit model.
The function .A.PCM3
generates the parametrization for the \(A\)
design matrix in the dispersion model for ordered data (Andrich, 1982).
Andrich, D. (1982). An extension of the Rasch model for ratings providing both location and dispersion parameters. Psychometrika, 47(1), 105-113. doi:10.1007/BF02293856
The function designMatrices.mfr2
handles multi-faceted design for
items with differing number of response options.
See data.sim.mfr
for some examples for creating design matrices.
###########################################################
# different parametrizations for ordered data
data( data.gpcm )
resp <- data.gpcm
# parametrization for partial credit model
A1 <- TAM::designMatrices( resp=resp )$A
# item difficulty and threshold parametrization
A2 <- TAM::.A.PCM2( resp )
# dispersion model of Andrich (1982)
A3 <- TAM::.A.PCM3( resp )
# rating scale model
A4 <- TAM::designMatrices( resp=resp, modeltype="RSM" )$A