tam.ctt.Rd
The functions computes some item statistics based on classical test theory.
tam.ctt(resp, wlescore=NULL, pvscores=NULL, group=NULL, progress=TRUE)
tam.ctt2(resp, wlescore=NULL, group=NULL, allocate=30, progress=TRUE)
tam.ctt3(resp, wlescore=NULL, group=NULL, allocate=30, progress=TRUE, max_ncat=30,
pweights=NULL)
tam.cb( dat, wlescore=NULL, group=NULL, max_ncat=30, progress=TRUE,
pweights=NULL, digits_freq=5)
plotctt( resp, theta, Ncuts=NULL, ask=FALSE, col.list=NULL,
package="lattice", ... )
A data frame with unscored or scored item responses
A vector with person parameter estimates, e.g. weighted likelihood
estimates obtained from tam.wle
. If wlescore=NULL
is
chosen in tam.ctt2
, then only a frequency table of all items
is produced.
A matrix with plausible values, e.g. obtained from tam.pv
Vector of group identifiers if descriptive statistics shall be groupwise calculated
An optional logical indicating whether computation progress should be displayed.
Average number of categories per item. This argument is just used for matrix size allocations. If an error is produced, use a sufficiently higher number.
Maximum number of categories of variables for which frequency tables should be computed
Optional vector of person weights
Data frame
Number of digits for rounding in frequency table
A score to be conditioned
Number of break points for theta
A logical which asks for changing the graphic from item to item.
The default is FALSE
.
Optional vector of colors for plotting
Package used for plotting. Can be "lattice"
or "graphics"
.
Further arguments to be passed.
The functions tam.ctt2
and tam.ctt3
use Rcpp code
and are slightly faster.
However, only tam.ctt
allows the input of wlescore
and
pvscores
.
A data frame with following columns:
Index variable in this data frame
Group identifier
Item number
Item
Number of students responding to this item
Category label
Absolute frequency of category
Relative frequency of category
Point biserial correlation of an item category and the WLE
Mean of the WLE of students in this item category
Standard deviation of the WLE of students in this item category
Point biserial correlation of an item category and the PV
Mean of the PV of students in this item category
Standard deviation of the PV of students in this item category
For dichotomously scored data, rpb.WLE
is the ordinary point biserial
correlation of an item and a test score (here the WLE).
if (FALSE) {
#############################################################################
# EXAMPLE 1: Multiple choice data data.mc
#############################################################################
data(data.mc)
# estimate Rasch model for scored data.mc data
mod <- TAM::tam.mml( resp=data.mc$scored )
# estimate WLE
w1 <- TAM::tam.wle( mod )
# estimate plausible values
set.seed(789)
p1 <- TAM::tam.pv( mod, ntheta=500, normal.approx=TRUE )$pv
# CTT results for raw data
stat1 <- TAM::tam.ctt( resp=data.mc$raw, wlescore=w1$theta, pvscores=p1[,-1] )
stat1a <- TAM::tam.ctt2( resp=data.mc$raw, wlescore=w1$theta ) # faster
stat1b <- TAM::tam.ctt2( resp=data.mc$raw ) # only frequencies
stat1c <- TAM::tam.ctt3( resp=data.mc$raw, wlescore=w1$theta ) # faster
# plot empirical item response curves
plotctt( resp=data.mc$raw, theta=w1$theta, Ncuts=5, ask=TRUE)
# use graphics for plot
plotctt( resp=data.mc$raw, theta=w1$theta, Ncuts=5, ask=TRUE, package="graphics")
# change colors
col.list <- c( "darkred", "darkslateblue", "springgreen4", "darkorange",
"hotpink4", "navy" )
plotctt( resp=data.mc$raw, theta=w1$theta, Ncuts=5, ask=TRUE,
package="graphics", col.list=col.list )
# CTT results for scored data
stat2 <- TAM::tam.ctt( resp=data.mc$scored, wlescore=w1$theta, pvscores=p1[,-1] )
# descriptive statistics for different groups
# define group identifier
group <- c( rep(1,70), rep(2,73) )
stat3 <- TAM::tam.ctt( resp=data.mc$raw, wlescore=w1$theta, pvscores=p1[,-1], group=group)
stat3a <- TAM::tam.ctt2( resp=data.mc$raw, wlescore=w1$theta, group=group)
}