mice.impute.2lonly.function.Rd
The imputation method mice.impute.2lonly.function
is a general
imputation function for level 2 imputation which allow any
defined imputation function at level 1 in mice.
mice.impute.2lonly.function(y, ry, x, wy=NULL, type, imputationFunction,
cluster_var, ...)
Incomplete data vector of length n
Vector of missing data pattern
(FALSE
=missing, TRUE
=observed)
Matrix (n
x p
) of complete
covariates. Only numeric variables are permitted for
usage of this function.
Logical vector of length(y)
indicating at which positions
imputations should be conducted.
Cluster identifier can be specified by -2
for aggregation. However,
we recommend to use the argument cluster_var
for specifying the cluster variable
at Level 2. Predictors must be specified by 1
.
Imputation function for mice. Any imputation method which is defined at level 1 can be used for level 2 imputation.
Cluster identifier for Level 2 units
Other named arguments.
A vector of length nmis
with imputations.
See mice::mice.impute.2lonly.norm
and
the mice::mice.impute.2lonly.pmm
function.
See also the jomo package (jomo::jomo2
)
for joint multilevel imputation of level 1 and
level 2 variables.
if (FALSE) {
#############################################################################
# EXAMPLE 1: Imputation of level 2 variables
#############################################################################
#**** Simulate some data
# x,y ... level 1 variables
# v,w ... level 2 variables
set.seed(987)
G <- 250 # number of groups
n <- 20 # number of persons
beta <- .3 # regression coefficient
rho <- .30 # residual intraclass correlation
rho.miss <- .10 # correlation with missing response
missrate <- .50 # missing proportion
y1 <- rep( stats::rnorm( G, sd=sqrt(rho)), each=n ) + stats::rnorm(G*n, sd=sqrt(1-rho))
w <- rep( round( stats::rnorm(G ), 2 ), each=n )
v <- rep( round( stats::runif( G, 0, 3 ) ), each=n )
x <- stats::rnorm( G*n )
y <- y1 + beta * x + .2 * w + .1 * v
dfr0 <- dfr <- data.frame( "group"=rep(1:G, each=n ), "x"=x, "y"=y,
"w"=w, "v"=v )
dfr[ rho.miss * x + stats::rnorm( G*n, sd=sqrt( 1 - rho.miss ) ) <
stats::qnorm(missrate), "y" ] <- NA
dfr[ rep( stats::rnorm(G), each=n ) < stats::qnorm(missrate), "w" ] <- NA
dfr[ rep( stats::rnorm(G), each=n ) < stats::qnorm(missrate), "v" ] <- NA
#* initial predictor matrix and imputation methods
predM <- mice::make.predictorMatrix(data=dfr)
impM <- mice::make.method(data=dfr)
#...
# multilevel imputation
predM1 <- predM
predM1[c("w","v","y"),"group"] <- c(0,0,-2)
predM1["y","x"] <- 1 # fixed x effects imputation
impM1 <- impM
impM1[c("y","w","v")] <- c("2l.continuous", "2lonly.function", "2lonly.function" )
# define imputation functions
imputationFunction <- list( "w"="sample", "v"="pmm5" )
# define cluster variable
cluster_var <- list( "w"="group", "v"="group" )
# impute
imp1 <- mice::mice( as.matrix(dfr), m=1, predictorMatrix=predM1, method=impM1, maxit=5,
imputationFunction=imputationFunction, cluster_var=cluster_var )
}