mice.nmi.Rd
Performs nested multiple imputation (Rubin, 2003) for the functions
mice::mice
and mice.1chain
.
The function mice.nmi
generates an object of class mids.nmi
.
List of datasets for which nested multiple imputation should be applied
Imputation model: type="mice"
for mice::mice
or
type="mice.1chain"
for mice.1chain
.
Arguments to be passed to mice::mice
or
mice.1chain
.
Object of class mids.nmi
.
Object of class mids.nmi
.
Object of class mids.nmi
with entries
List of nested multiply imputed datasets whose entries
are of class mids
or mids.1chain
.
Number of between and within imputations.
Rubin, D. B. (2003). Nested multiple imputation of NMES via partially incompatible MCMC. Statistica Neerlandica, 57(1), 3-18. doi:10.1111/1467-9574.00217
For imputation models see mice::mice
and mice.1chain
.
Functions for analyses of nested multiply imputed datasets:
complete.mids.nmi
, with.mids.nmi
,
pool.mids.nmi
if (FALSE) {
#############################################################################
# EXAMPLE 1: Nested multiple imputation for TIMSS data
#############################################################################
library(BIFIEsurvey)
data(data.timss2, package="BIFIEsurvey" )
datlist <- data.timss2
# list of 5 datasets containing 5 plausible values
#** define imputation method and predictor matrix
data <- datlist[[1]]
V <- ncol(data)
# variables
vars <- colnames(data)
# variables not used for imputation
vars_unused <- miceadds::scan.vec("IDSTUD TOTWGT JKZONE JKREP" )
#- define imputation method
impMethod <- rep("norm", V )
names(impMethod) <- vars
impMethod[ vars_unused ] <- ""
#- define predictor matrix
predM <- matrix( 1, V, V )
colnames(predM) <- rownames(predM) <- vars
diag(predM) <- 0
predM[, vars_unused ] <- 0
#***************
# (1) nested multiple imputation using mice
imp1 <- miceadds::mice.nmi( datlist, method=impMethod, predictorMatrix=predM,
m=4, maxit=3 )
summary(imp1)
#***************
# (2) nested multiple imputation using mice.1chain
imp2 <- miceadds::mice.nmi( datlist, method=impMethod, predictorMatrix=predM,
Nimp=4, burnin=10,iter=22, type="mice.1chain")
summary(imp2)
}