mice.nmi.RdPerforms nested multiple imputation (Rubin, 2003) for the functions
mice::mice and mice.1chain.
The function mice.nmi generates an object of class mids.nmi.
List of datasets for which nested multiple imputation should be applied
Imputation model: type="mice" for mice::mice or
type="mice.1chain" for mice.1chain.
Arguments to be passed to mice::mice or
mice.1chain.
Object of class mids.nmi.
Object of class mids.nmi.
Object of class mids.nmi with entries
List of nested multiply imputed datasets whose entries
are of class mids or mids.1chain.
Number of between and within imputations.
Rubin, D. B. (2003). Nested multiple imputation of NMES via partially incompatible MCMC. Statistica Neerlandica, 57(1), 3-18. doi:10.1111/1467-9574.00217
For imputation models see mice::mice
and mice.1chain.
Functions for analyses of nested multiply imputed datasets:
complete.mids.nmi, with.mids.nmi,
pool.mids.nmi
if (FALSE) {
#############################################################################
# EXAMPLE 1: Nested multiple imputation for TIMSS data
#############################################################################
library(BIFIEsurvey)
data(data.timss2, package="BIFIEsurvey" )
datlist <- data.timss2
# list of 5 datasets containing 5 plausible values
#** define imputation method and predictor matrix
data <- datlist[[1]]
V <- ncol(data)
# variables
vars <- colnames(data)
# variables not used for imputation
vars_unused <- miceadds::scan.vec("IDSTUD TOTWGT JKZONE JKREP" )
#- define imputation method
impMethod <- rep("norm", V )
names(impMethod) <- vars
impMethod[ vars_unused ] <- ""
#- define predictor matrix
predM <- matrix( 1, V, V )
colnames(predM) <- rownames(predM) <- vars
diag(predM) <- 0
predM[, vars_unused ] <- 0
#***************
# (1) nested multiple imputation using mice
imp1 <- miceadds::mice.nmi( datlist, method=impMethod, predictorMatrix=predM,
m=4, maxit=3 )
summary(imp1)
#***************
# (2) nested multiple imputation using mice.1chain
imp2 <- miceadds::mice.nmi( datlist, method=impMethod, predictorMatrix=predM,
Nimp=4, burnin=10,iter=22, type="mice.1chain")
summary(imp2)
}