micombine.F.Rd
Several \(F\) statistics from multiply imputed datasets are combined using
an approximation based on \(\chi^2\) statistics
(see micombine.chisquare
).
micombine.F(Fvalues, df1, display=TRUE, version=1)
Vector containing \(F\) values.
Degrees of freedom of the numerator. Degrees of freedom of the numerator are approximated by \(\infty\) (large number of degrees of freedom).
A logical indicating whether results should be displayed at the console
Integer indicating which calculation formula should be used.
The default version=1
refers to the correct formula as in Enders (2010),
while version=0
uses an incorrect formula as printed in Allison (2001).
The incorrect calculation version=0
was included in miceadds versions
smaller than version 2.0.
See also http://statisticalhorizons.com/wp-content/uploads/2012/01/combchi.sas.
The same output as in micombine.chisquare
Allison, P. D. (2002). Missing data. Newbury Park, CA: Sage.
Enders, C. K. (2010). Applied missing data analysis. Guilford Press.
Grund, S., Luedtke, O., & Robitzsch, A. (2016). Pooling ANOVA results from multiply imputed datasets: A simulation study. Methodology, 12(3), 75-88. doi:10.1027/1614-2241/a000111
#############################################################################
# EXAMPLE 1: F statistics for 5 imputed datasets
#############################################################################
Fvalues <- c( 6.76, 4.54, 4.23, 5.45, 4.78 )
micombine.F(Fvalues, df1=4 )
## Combination of Chi Square Statistics for Multiply Imputed Data
## Using 5 Imputed Data Sets
## F(4, 52.94)=3.946 p=0.00709