tw.imputation.Rd
Two-way imputation using the simple method of Sijtsma and van der Ark (2003) and the MCMC based imputation of van Ginkel, van der Ark, Sijtsma and Vermunt (2007).
tw.imputation(data, integer=FALSE)
tw.mcmc.imputation(data, iter=100, integer=FALSE)
Matrix of item responses corresponding to a scale
A logical indicating whether imputed values should be integers.
The default is FALSE
.
Number of iterations
For persons \(p\) and items \(i\), the two-way imputation is conducted by posing a linear model of tau-equivalent measurements: $$X_{pi}=\theta_p + b_i + \varepsilon_{ij} $$ If the score \(X_{pi}\) is missing then it is imputed by $$\hat{X}_{pi}=\tilde{X}_p + b_i $$ where \(\tilde{X}_p\) is the person mean of person \(p\) of the remaining items with observed responses.
The two-way imputation can also be seen as a scaling procedure to obtain a scale score which takes different item means into account.
A matrix with original and imputed values
Sijtsma, K., & Van der Ark, L. A. (2003). Investigation and treatment of missing item scores in test and questionnaire data. Multivariate Behavioral Research, 38(4), 505-528. doi:10.1207/s15327906mbr3804_4
Van Ginkel, J. R., Van der Ark, A., Sijtsma, K., & Vermunt, J. K. (2007). Two-way imputation: A Bayesian method for estimating missing scores in tests and questionnaires, and an accurate approximation. Computational Statistics & Data Analysis, 51(8), 4013-4027. doi:10.1016/j.csda.2006.12.022
The two-way imputation method is also implemented in
the TestDataImputation::Twoway
function of the
TestDataImputation package.
if (FALSE) {
#############################################################################
# EXAMPLE 1: Two-way imputation data.internet
#############################################################################
data(data.internet)
data <- data.internet
#***
# Model 1: Two-way imputation method of Sijtsma and van der Ark (2003)
set.seed(765)
dat.imp <- miceadds::tw.imputation( data )
dat.imp[ 278:281,]
## IN9 IN10 IN11 IN12
## 278 5 4.829006 5.00000 4.941611
## 279 5 4.000000 4.78979 4.000000
## 280 7 4.000000 7.00000 7.000000
## 281 4 3.000000 5.00000 5.000000
#***
# Model 2: Two-way imputation method using MCMC
dat.imp <- miceadds::tw.mcmc.imputation( data, iter=3)
dat.imp[ 278:281,]
## IN9 IN10 IN11 IN12
## 278 5 6.089222 5.000000 3.017244
## 279 5 4.000000 5.063547 4.000000
## 280 7 4.000000 7.000000 7.000000
## 281 4 3.000000 5.000000 5.000000
}