Running ConQuest From Within R
R2conquest.Rd
The function R2conquest
runs the IRT software ConQuest
(Wu, Adams, Wilson & Haldane, 2007) from within R.
Other functions are utility functions for reading item parameters, plausible values or person-item maps.
Usage
R2conquest(dat, path.conquest, conquest.name="console", converge=0.001,
deviancechange=1e-04, iter=800, nodes=20, minnode=-6, maxnode=6,
show.conquestoutput=FALSE, name="rasch", pid=1:(nrow(dat)), wgt=NULL, X=NULL,
set.constraints=NULL, model="item", regression=NULL,
itemcodes=seq(0,max(dat,na.rm=TRUE)), constraints=NULL, digits=5, onlysyntax=FALSE,
qmatrix=NULL, import.regression=NULL, anchor.regression=NULL,
anchor.covariance=NULL, pv=TRUE, designmatrix=NULL, only.calibration=FALSE,
init_parameters=NULL, n_plausible=10, persons.elim=TRUE, est.wle=TRUE,
save.bat=TRUE, use.bat=FALSE, read.output=TRUE, ignore.pid=FALSE)
# S3 method for R2conquest
summary(object, ...)
# read all terms in a show file or only some terms
read.show(showfile)
read.show.term(showfile, term)
# read regression parameters in a show file
read.show.regression(showfile)
# read unidimensional plausible values form a pv file
read.pv(pvfile, npv=5)
# read multidimensional plausible values
read.multidimpv(pvfile, ndim, npv=5)
# read person-item map
read.pimap(showfile)
Arguments
- dat
Data frame of item responses
- path.conquest
Directory where the ConQuest executable file is located
- conquest.name
Name of the ConQuest executable.
- converge
Maximal change in parameters
- deviancechange
Maximal change in deviance
- iter
Maximum number of iterations
- nodes
Number of nodes for integration
- minnode
Minimum value of discrete grid of \(\theta\) nodes
- maxnode
Maximum value of discrete grid of \(\theta\) nodes
- show.conquestoutput
Show ConQuest run log file on console?
- name
Name of the output files. The default is
'rasch'
.- pid
Person identifier
- wgt
Vector of person weights
- X
Matrix of covariates for the latent regression model (e.g. gender, socioeconomic status, ..) or for the item design (e.g. raters, booklets, ...)
- set.constraints
This is the set.constraints in ConQuest. It can be
"cases"
(constraint for persons),"items"
or"none"
- model
Definition model statement. It can be for example
"item+item*step"
or"item+booklet+rater"
- regression
The ConQuest regression statement (for example
"gender+status"
)- itemcodes
Vector of valid codes for item responses. E.g. for partial credit data with at most 3 points it must be
c(0,1,2,3)
.- constraints
Matrix of item parameter constraints. 1st column: Item names, 2nd column: Item parameters. It only works correctly for dichotomous data.
- digits
Number of digits for covariates in the latent regression model
- onlysyntax
Should only be ConQuest syntax generated?
- qmatrix
Matrix of item loadings on dimensions in a multidimensional IRT model
- import.regression
Name of an file with initial covariance parameters (follow the ConQuest specification rules!)
- anchor.regression
Name of an file with anchored regression parameters
- anchor.covariance
Name of an file with anchored covariance parameters (follow the ConQuest specification rules!)
- pv
Draw plausible values?
- designmatrix
Design matrix for item parameters (see the ConQuest manual)
- only.calibration
Estimate only item parameters and not person parameters (no WLEs or plausible values are estimated)?
- init_parameters
Name of an file with initial item parameters (follow the ConQuest specification rules!)
- n_plausible
Number of plausible values
- persons.elim
Eliminate persons with only missing item responses?
- est.wle
Estimate weighted likelihood estimate?
- save.bat
Save bat file?
- use.bat
Run ConQuest from within R due a direct call via the
system
command (use.bat=FALSE
) or via asystem
call of a bat file in the working directory (use.bat=TRUE
)- read.output
Should ConQuest output files be processed? Default is
TRUE
.- ignore.pid
Logical indicating whether person identifiers (
pid
) should be processed in ConQuest input syntax.- object
Object of class
R2conquest
- showfile
A ConQuest show file (
shw
file)- term
Name of the term to be extracted in the show file
- pvfile
File with plausible values
- ndim
Number of dimensions
- npv
Number of plausible values
- ...
Further arguments to be passed
Value
A list with several entries
- item
Data frame with item parameters and item statistics
- person
Data frame with person parameters
- shw.itemparameter
ConQuest output table for item parameters
- shw.regrparameter
ConQuest output table for regression parameters
- ...
More values
References
Wu, M. L., Adams, R. J., Wilson, M. R. & Haldane, S. (2007). ACER ConQuest Version 2.0. Mulgrave. https://shop.acer.edu.au/acer-shop/group/CON3.
See also
See also the eat package (https://r-forge.r-project.org/projects/eat/) for elaborate functionality of using ConQuest from within R. See also the conquestr package for another R wrapper to the ConQuest software (at least version 4 of ConQuest has to be installed).
See also the TAM package for similar (and even extended) functionality for specifying item response models.
Examples
if (FALSE) {
# define ConQuest path
path.conquest <- "C:/Conquest/"
#############################################################################
# EXAMPLE 1: Dichotomous data (data.pisaMath)
#############################################################################
library(sirt)
data(data.pisaMath)
dat <- data.pisaMath$data
# select items
items <- colnames(dat)[ which( substring( colnames(dat), 1, 1)=="M" ) ]
#***
# Model 11: Rasch model
mod11 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest,
pid=dat$idstud, name="mod11")
summary(mod11)
# read show file
shw11 <- sirt::read.show( "mod11.shw" )
# read person-item map
pi11 <- sirt::read.pimap(showfile="mod11.shw")
#***
# Model 12: Rasch model with fixed item difficulties (from Model 1)
mod12 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest,
pid=dat$idstud, constraints=mod11$item[, c("item","itemdiff")],
name="mod12")
summary(mod12)
#***
# Model 13: Latent regression model with predictors female, hisei and migra
mod13a <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest,
pid=dat$idstud, X=dat[, c("female", "hisei", "migra") ],
name="mod13a")
summary(mod13a)
# latent regression with a subset of predictors
mod13b <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest,
pid=dat$idstud, X=dat[, c("female", "hisei", "migra") ],
regression="hisei migra", name="mod13b")
#***
# Model 14: Differential item functioning (female)
mod14 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest,
pid=dat$idstud, X=dat[, c("female"), drop=FALSE],
model="item+female+item*female", regression="", name="mod14")
#############################################################################
# EXAMPLE 2: Polytomous data (data.Students)
#############################################################################
library(CDM)
data(data.Students)
dat <- data.Students
# select items
items <- grep.vec( "act", colnames(dat) )$x
#***
# Model 21: Partial credit model
mod21 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest,
model="item+item*step", name="mod21")
#***
# Model 22: Rating scale model
mod22 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest,
model="item+step", name="mod22")
#***
# Model 23: Multidimensional model
items <- grep.vec( c("act", "sc" ), colnames(dat), "OR" )$x
qmatrix <- matrix( 0, nrow=length(items), 2 )
qmatrix[1:5,1] <- 1
qmatrix[6:9,2] <- 1
mod23 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest,
model="item+item*step", qmatrix=qmatrix, name="mod23")
#############################################################################
# EXAMPLE 3: Multi facet models (data.ratings1)
#############################################################################
library(sirt)
data(data.ratings1)
dat <- data.ratings1
items <- paste0("k",1:5)
# use numeric rater ID's
raters <- as.numeric( substring( paste( dat$rater ), 3 ) )
#***
# Model 31: Rater model 'item+item*step+rater'
mod31 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest,
itemcodes=0:3, model="item+item*step+rater",
pid=dat$idstud, X=data.frame("rater"=raters),
regression="", name="mod31")
#***
# Model 32: Rater model 'item+item*step+rater+item*rater'
mod32 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest,
model="item+item*step+rater+item*rater",
pid=dat$idstud, X=data.frame("rater"=raters),
regression="", name="mod32")
}