Estimation of a NOHARM Analysis from within R
R2noharm.Rd
This function enables the estimation of a NOHARM analysis (Fraser & McDonald, 1988; McDonald, 1982a, 1982b, 1997) from within R. NOHARM estimates a compensatory multidimensional factor analysis for dichotomous response data. Arguments of this function strictly follow the rules of the NOHARM manual (see Fraser & McDonald, 2012; Lee & Lee, 2016).
Usage
R2noharm(dat=NULL,pm=NULL, n=NULL, model.type, weights=NULL, dimensions=NULL,
guesses=NULL, noharm.path, F.pattern=NULL, F.init=NULL,
P.pattern=NULL, P.init=NULL, digits.pm=4, writename=NULL,
display.fit=5, dec=".", display=TRUE)
# S3 method for R2noharm
summary(object, logfile=NULL, ...)
Arguments
- dat
An \(N \times I\) data frame of item responses for \(N\) subjects and \(I\) items
- pm
A matrix or a vector containing product-moment correlations
- n
Sample size. This value must only be included if
pm
is provided.- model.type
Can be
"EFA"
(exploratory factor analysis) or"CFA"
(confirmatory factor analysis).- weights
Optional vector of student weights
- dimensions
Number of dimensions in exploratory factor analysis
- guesses
An optional vector of fixed guessing parameters of length \(I\). In case of the default
NULL
, all guessing parameters are set to zero.- noharm.path
Local path where the NOHARM 4 command line 64-bit version is located.
- F.pattern
Pattern matrix for \(F\) (\(I \times D\))
- F.init
Initial matrix for \(F\) (\(I \times D\))
- P.pattern
Pattern matrix for \(P\) (\(D \times D\))
- P.init
Initial matrix for \(P\) (\(D \times D\))
- digits.pm
Number of digits after decimal separator which are used for estimation
- writename
Name for NOHARM input and output files
- display.fit
How many digits (after decimal separator) should be used for printing results on the R console?
- dec
Decimal separator (
"."
or","
)- display
Display output?
- object
Object of class
R2noharm
- logfile
File name if the summary should be sunk into a file
- ...
Further arguments to be passed
Details
NOHARM estimates a multidimensional compensatory item response model with the probit link function \(\Phi\). For item responses \(X_{pi}\) of person \(p\) on item \(i\) the model equation is defined as $$P( X_{pi}=1 | \bold{\theta}_p )=c_i + ( 1 - c_i ) \Phi( f_{i0} + f_{i1} \theta_{p1} + ... + f_{iD} \theta_{pD} ) $$ where \(F=(f_{id})\) is a loading matrix and \(P\) the covariance matrix of \(\bold{\theta}_p\). The guessing parameters \(c_i\) must be provided as fixed values.
For the definition of \(F\) and \(P\) matrices, please consult the NOHARM manual.
This function needs the 64-bit command line version which can be downloaded
from (some links may be broken in the meantime)
http://noharm.niagararesearch.ca/nh4cldl.html
https://noharm.software.informer.com/4.0/
https://cehs.unl.edu/edpsych/software-urls-and-other-interesting-sites/
Value
A list with following entries
- tanaka
Tanaka index
- rmsr
RMSR statistic
- N.itempair
Sample sizes of pairwise item observations
- pm
Product moment matrix
- weights
Used student weights
- guesses
Fixed guessing parameters
- residuals
Residual covariance matrix
- final.constants
Vector of final constants
- thresholds
Threshold parameters
- uniquenesses
Item uniquenesses
- loadings.theta
Matrix of loadings in theta parametrization (common factor parametrization)
- factor.cor
Covariance matrix of factors
- difficulties
Item difficulties (for unidimensional models)
- discriminations
Item discriminations (for unidimensional models)
- loadings
Loading matrix (latent trait parametrization)
- model.type
Used model type
- Nobs
Number of observations
- Nitems
Number of items
- modtype
Model type according to the NOHARM specification (see NOHARM manual)
- F.init
Initial loading matrix for \(F\)
- F.pattern
Pattern loading matrix for \(F\)
- P.init
Initial covariance matrix for \(P\)
- P.pattern
Pattern covariance matrix for \(P\)
- dat
Original data frame
- systime
System time
- noharm.path
Used NOHARM directory
- digits.pm
Number of digits in product moment matrix
- dec
Used decimal symbol
- display.fit
Number of digits for fit display
- dimensions
Number of dimensions
- chisquare
Statistic \(\chi^2\)
- Nestpars
Number of estimated parameters
- df
Degrees of freedom
- chisquare_df
Ratio \(\chi^2 / df\)
- rmsea
RMSEA statistic
- p.chisquare
Significance for \(\chi^2\) statistic
References
Fraser, C., & McDonald, R. P. (1988). NOHARM: Least squares item factor analysis. Multivariate Behavioral Research, 23, 267-269. https://doi.org/10.1207/s15327906mbr2302_9
Fraser, C., & McDonald, R. P. (2012). NOHARM 4 Manual.
http://noharm.niagararesearch.ca/nh4man/nhman.html.
Lee, J. J., & Lee, M. K. (2016). An overview of the normal ogive harmonic analysis robust method (NOHARM) approach to item response theory. Tutorials in Quantitative Methods for Psychology, 12(1), 1-8. https://doi.org/10.20982/tqmp.12.1.p001
McDonald, R. P. (1982a). Linear versus nonlinear models in item response theory. Applied Psychological Measurement, 6(4), 379-396. doi:10.1177/014662168200600402
McDonald, R. P. (1982b). Unidimensional and multidimensional models for item response theory. I.R.T., C.A.T. conference, Minneapolis, 1982, Proceedings.
McDonald, R. P. (1997). Normal-ogive multidimensional model. In W. van der Linden & R. K. Hambleton (1997): Handbook of modern item response theory (pp. 257-269). New York: Springer. http://dx.doi.org/10.1007/978-1-4757-2691-6
See also
For estimating standard errors see R2noharm.jackknife
.
For EAP person parameter estimates see R2noharm.EAP
.
For an R implementation of the NOHARM model see noharm.sirt
.