Maximum Likelihood Estimation of the Dirichlet Distribution
dirichlet.mle.Rd
Maximum likelihood estimation of the parameters of the Dirichlet distribution
Usage
dirichlet.mle(x, weights=NULL, eps=10^(-5), convcrit=1e-05, maxit=1000,
oldfac=.3, progress=FALSE)
Arguments
- x
Data frame with \(N\) observations and \(K\) variables of a Dirichlet distribution
- weights
Optional vector of frequency weights
- eps
Tolerance number which is added to prevent from logarithms of zero
- convcrit
Convergence criterion
- maxit
Maximum number of iterations
- oldfac
Convergence acceleration factor. It must be a parameter between 0 and 1.
- progress
Display iteration progress?
Value
A list with following entries
- alpha
Vector of \(\alpha\) parameters
- alpha0
The concentration parameter \(\alpha_0=\sum_k \alpha_k\)
- xsi
Vector of proportions \(\xi_k=\alpha_k / \alpha_0\)
See also
For simulating Dirichlet vectors with matrix-wise
\(\bold{\alpha}\) parameters see dirichlet.simul
.
For a variety of functions concerning the Dirichlet distribution see the DirichletReg package.