Fitting the ISOP and ADISOP Model for Frequency Tables
fit.isop.Rd
Fit the isotonic probabilistic model (ISOP; Scheiblechner, 1995) and the additive isotonic probabilistic model (ADISOP; Scheiblechner, 1999).
Usage
fit.isop(freq.correct, wgt, conv=1e-04, maxit=100,
progress=TRUE, calc.ll=TRUE)
fit.adisop(freq.correct, wgt, conv=1e-04, maxit=100,
epsilon=0.01, progress=TRUE, calc.ll=TRUE)
Arguments
- freq.correct
Frequency table
- wgt
Weights for frequency table (number of persons in each cell)
- conv
Convergence criterion
- maxit
Maximum number of iterations
- epsilon
Additive constant to handle cell frequencies of 0 or 1 in
fit.adisop
- progress
Display progress?
- calc.ll
Calculate log-likelihood values? The default is
TRUE
.
Details
See isop.dich
for more details of the
ISOP and ADISOP model.
Value
A list with following entries
- fX
Fitted frequency table
- ResX
Residual frequency table
- fit
Fit statistic: weighted least squares of deviations between observed and expected frequencies
- item.sc
Estimated item parameters
- person.sc
Estimated person parameters
- ll
Log-likelihood of the model
- freq.fitted
Fitted frequencies in a long data frame
References
Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60, 281-304.
Scheiblechner, H. (1999). Additive conjoint isotonic probabilistic models (ADISOP). Psychometrika, 64, 295-316.
Note
For fitting the ADISOP model it is recommended to first fit the ISOP model and then proceed with the fitted frequency table from ISOP (see Examples).
See also
For fitting the ISOP model to dichotomous and
polytomous data see isop.dich
.
Examples
#############################################################################
# EXAMPLE 1: Dataset Reading
#############################################################################
data(data.read)
dat <- as.matrix( data.read)
dat.resp <- 1 - is.na(dat) # response indicator matrix
I <- ncol(dat)
#***
# (1) Data preparation
# actually only freq.correct and wgt are needed
# but these matrices must be computed in advance.
# different scores of students
stud.p <- rowMeans( dat, na.rm=TRUE )
# different item p values
item.p <- colMeans( dat, na.rm=TRUE )
item.ps <- sort( item.p, index.return=TRUE)
dat <- dat[, item.ps$ix ]
# define score groups students
scores <- sort( unique( stud.p ) )
SC <- length(scores)
# create table
freq.correct <- matrix( NA, SC, I )
wgt <- freq.correct
# percent correct
a1 <- stats::aggregate( dat==1, list( stud.p ), mean, na.rm=TRUE )
freq.correct <- a1[,-1]
# weights
a1 <- stats::aggregate( dat.resp, list( stud.p ), sum, na.rm=TRUE )
wgt <- a1[,-1]
#***
# (2) Fit ISOP model
res.isop <- sirt::fit.isop( freq.correct, wgt )
# fitted frequency table
res.isop$fX
#***
# (3) Fit ADISOP model
# use monotonely smoothed frequency table from ISOP model
res.adisop <- sirt::fit.adisop( freq.correct=res.isop$fX, wgt )
# fitted frequency table
res.adisop$fX