MCMC Estimation of the Hierarchical IRT Model for Criterion-Referenced Measurement
mcmc.2pnoh.Rd
This function estimates the hierarchical IRT model for criterion-referenced measurement which is based on a two-parameter normal ogive response function (Janssen, Tuerlinckx, Meulders & de Boeck, 2000).
Arguments
- dat
Data frame with dichotomous item responses
- itemgroups
Vector with characters or integers which define the criterion to which an item is associated.
- prob.mastery
Probability levels which define nonmastery, transition and mastery stage (see Details)
- weights
An optional vector with student sample weights
- burnin
Number of burnin iterations
- iter
Total number of iterations
- N.sampvalues
Maximum number of sampled values to save
- progress.iter
Display progress every
progress.iter
-th iteration. If no progress display is wanted, then chooseprogress.iter
larger thaniter
.- prior.variance
Scale parameter of the inverse gamma distribution for the \(\sigma^2\) and \(\nu^2\) item variance parameters
- save.theta
Should theta values be saved?
Details
The hierarchical IRT model for criterion-referenced measurement
(Janssen et al., 2000) assumes that every item \(i\) intends
to measure a criterion \(k\). The item response function is defined as
$$ P(X_{pik}=1 | \theta_p )=
\Phi [ \alpha_{ik} ( \theta_p - \beta_{ik} ) ]
\quad, \quad \theta_p \sim N(0,1) $$
Item parameters \((\alpha_{ik},\beta_{ik})\) are hierarchically modeled, i.e.
$$ \beta_{ik} \sim N( \xi_k, \sigma^2 ) \quad \mbox{and} \quad
\alpha_{ik} \sim N( \omega_k, \nu^2 ) $$
In the mcmc.list
output object, also the derived parameters
\(d_{ik}=\alpha_{ik} \beta_{ik}\) and \(\tau_k=\xi_k \omega_k\) are
calculated.
Mastery and nonmastery probabilities are based on a reference item \(Y_{k}\)
of criterion \(k\) and a response function
$$ P(Y_{pk}=1 | \theta_p )=
\Phi [ \omega_{k} ( \theta_p - \xi_{k} ) ]
\quad, \quad \theta_p \sim N(0,1) $$
With known item parameters and person parameters, response probabilities of
criterion \(k\) are calculated. If a response probability of criterion \(k\)
is larger than prob.mastery[2]
, then a student is defined as a
master. If this probability is smaller than prob.mastery[1]
, then
a student is a nonmaster. In all other cases, students are in a transition
stage.
In the mcmcobj
output object, the parameters d[i]
are defined by
\(d_{ik}=\alpha_{ik} \cdot \beta_{ik}\) while tau[k]
are defined by
\( \tau_k=\xi_k \cdot \omega_k \).
Value
A list of class mcmc.sirt
with following entries:
- mcmcobj
Object of class
mcmc.list
- summary.mcmcobj
Summary of the
mcmcobj
object. In this summary the Rhat statistic and the mode estimate MAP is included. The variablePercSEratio
indicates the proportion of the Monte Carlo standard error in relation to the total standard deviation of the posterior distribution.- burnin
Number of burnin iterations
- iter
Total number of iterations
- alpha.chain
Sampled values of \(\alpha_{ik}\) parameters
- beta.chain
Sampled values of \(\beta_{ik}\) parameters
- xi.chain
Sampled values of \(\xi_{k}\) parameters
- omega.chain
Sampled values of \(\omega_{k}\) parameters
- sigma.chain
Sampled values of \(\sigma\) parameter
- nu.chain
Sampled values of \(\nu\) parameter
- theta.chain
Sampled values of \(\theta_p\) parameters
- deviance.chain
Sampled values of Deviance values
- EAP.rel
EAP reliability
- person
Data frame with EAP person parameter estimates for \(\theta_p\) and their corresponding posterior standard deviations
- dat
Used data frame
- weights
Used student weights
- ...
Further values
References
Janssen, R., Tuerlinckx, F., Meulders, M., & De Boeck, P. (2000). A hierarchical IRT model for criterion-referenced measurement. Journal of Educational and Behavioral Statistics, 25, 285-306.
See also
S3 methods: summary.mcmc.sirt
, plot.mcmc.sirt
The two-parameter normal ogive model can be estimated with
mcmc.2pno
.
Examples
if (FALSE) {
#############################################################################
# EXAMPLE 1: Simulated data according to Janssen et al. (2000, Table 2)
#############################################################################
N <- 1000
Ik <- c(4,6,8,5,9,6,8,6,5)
xi.k <- c( -.89, -1.13, -1.23, .06, -1.41, -.66, -1.09, .57, -2.44)
omega.k <- c(.98, .91, .76, .74, .71, .80, .79, .82, .54)
# select 4 attributes
K <- 4
Ik <- Ik[1:K] ; xi.k <- xi.k[1:K] ; omega.k <- omega.k[1:K]
sig2 <- 3.02
nu2 <- .09
I <- sum(Ik)
b <- rep( xi.k, Ik ) + stats::rnorm(I, sd=sqrt(sig2) )
a <- rep( omega.k, Ik ) + stats::rnorm(I, sd=sqrt(nu2) )
theta1 <- stats::rnorm(N)
t1 <- rep(1,N)
p1 <- stats::pnorm( outer(t1,a) * ( theta1 - outer(t1,b) ) )
dat <- 1 * ( p1 > stats::runif(N*I) )
itemgroups <- rep( paste0("A", 1:K ), Ik )
# estimate model
mod <- sirt::mcmc.2pnoh(dat, itemgroups, burnin=200, iter=1000 )
# summary
summary(mod)
# plot
plot(mod$mcmcobj, ask=TRUE)
# write coda files
mcmclist2coda( mod$mcmcobj, name="simul_2pnoh" )
}