Computation of Descriptive Statistics for a mcmc.list Object
mcmc.list.descriptives.RdComputation of descriptive statistics, Rhat convergence statistic
and MAP for a mcmc.list object. The Rhat statistic
is computed by splitting one Monte Carlo chain into three segments of equal
length. The MAP is the mode estimate of the posterior distribution which is
approximated by the mode of the kernel density estimate.
Usage
mcmc.list.descriptives( mcmcobj, quantiles=c(.025,.05,.1,.5,.9,.95,.975) )See also
See mcmclist2coda for writing an object of class mcmc.list
into a coda file (see also the coda package).
Examples
if (FALSE) {
miceadds::library_install("coda")
miceadds::library_install("R2WinBUGS")
#############################################################################
# EXAMPLE 1: Logistic regression
#############################################################################
#***************************************
# (1) simulate data
set.seed(8765)
N <- 500
x1 <- stats::rnorm(N)
x2 <- stats::rnorm(N)
y <- 1*( stats::plogis( -.6 + .7*x1 + 1.1 *x2 ) > stats::runif(N) )
#***************************************
# (2) estimate logistic regression with glm
mod <- stats::glm( y ~ x1 + x2, family="binomial" )
summary(mod)
#***************************************
# (3) estimate model with rcppbugs package
b <- rcppbugs::mcmc.normal( stats::rnorm(3),mu=0,tau=0.0001)
y.hat <- rcppbugs::deterministic(function(x1,x2,b) {
stats::plogis( b[1] + b[2]*x1 + b[3]*x2 ) }, x1, x2, b)
y.lik <- rcppbugs::mcmc.bernoulli( y, p=y.hat, observed=TRUE)
m <- rcppbugs::create.model(b, y.hat, y.lik)
#*** estimate model in rcppbugs; 5000 iterations, 1000 burnin iterations
ans <- rcppbugs::run.model(m, iterations=5000, burn=1000, adapt=1000, thin=5)
print(rcppbugs::get.ar(ans)) # get acceptance rate
print(apply(ans[["b"]],2,mean)) # get means of posterior
#*** convert rcppbugs into mcmclist object
mcmcobj <- data.frame( ans$b )
colnames(mcmcobj) <- paste0("b",1:3)
mcmcobj <- as.matrix(mcmcobj)
class(mcmcobj) <- "mcmc"
attr(mcmcobj, "mcpar") <- c( 1, nrow(mcmcobj), 1 )
mcmcobj <- coda::as.mcmc.list( mcmcobj )
# plot results
plot(mcmcobj)
# summary
summ1 <- sirt::mcmc.list.descriptives( mcmcobj )
summ1
}