Response Pattern in a Binary Matrix
md.pattern.sirt.Rd
Computes different statistics of the response pattern in a binary matrix.
Value
A list with following entries:
- dat
Original dataset
- dat.resp1
Indices for responses of 1's
- dat.resp0
Indices for responses of 0's
- resp_patt
Vector of response patterns
- unique_resp_patt
Unique response patterns
- unique_resp_patt_freq
Frequencies of unique response patterns
- unique_resp_patt_firstobs
First observation in original dataset
dat
of a unique response pattern- freq1
Frequencies of 1's
- freq0
Frequencies of 0's
- dat.ordered
Dataset according to response patterns
Examples
#############################################################################
# EXAMPLE 1: Response patterns
#############################################################################
set.seed(7654)
N <- 21 # number of rows
I <- 4 # number of columns
dat <- matrix( 1*( stats::runif(N*I) > .3 ), N, I )
res <- sirt::md.pattern.sirt(dat)
# plot of response patterns
res$dat.ordered
image( z=t(res$dat.ordered), y=1:N, x=1:I, xlab="Items", ylab="Persons")
# 0's are yellow and 1's are red
#############################################################################
# EXAMPLE 2: Item response patterns for dataset data.read
#############################################################################
data(data.read)
dat <- data.read ; N <- nrow(dat) ; I <- ncol(dat)
# order items according to p values
dat <- dat[, order(colMeans(dat, na.rm=TRUE )) ]
# analyzing response pattern
res <- sirt::md.pattern.sirt(dat)
res$dat.ordered
image( z=t(res$dat.ordered), y=1:N, x=1:I, xlab="Items", ylab="Persons")