Monotone Regression for Rows or Columns in a Matrix
monoreg.rowwise.Rd
Monotone (isotone) regression for rows (monoreg.rowwise
) or
columns (monoreg.colwise
) in a matrix.
Arguments
- yM
Matrix with dependent variable for the regression. Values are assumed to be sorted.
- wM
Matrix with weights for every entry in the
yM
matrix.
Author
Alexander Robitzsch
The monoreg
function from the fdrtool
package is simply extended to handle matrix input.
Note
This function is used for fitting the ISOP model
(see isop.dich
).
Examples
y <- c(22.5, 23.33, 20.83, 24.25 )
w <- c( 3,3,3,2)
# define matrix input
yM <- matrix( 0, nrow=2, ncol=4 )
wM <- yM
yM[1,] <- yM[2,] <- y
wM[1,] <- w
wM[2,] <- c(1,3,4, 3 )
# fit rowwise monotone regression
monoreg.rowwise( yM, wM )
# compare results with monoreg function from fdrtool package
if (FALSE) {
miceadds::library_install("fdrtool")
fdrtool::monoreg(x=yM[1,], w=wM[1,])$yf
fdrtool::monoreg(x=yM[2,], w=wM[2,])$yf
}