Calculation of Probabilities and Moments for the Generalized Logistic Item Response Model
pgenlogis.Rd
Calculation of probabilities and moments for the generalized logistic item response model (Stukel, 1988).
Arguments
- x
Vector
- alpha1
Upper tail parameter α1 in the generalized logistic item response model. The default is 0.
- alpha2
Lower tail parameter α2 parameter in the generalized logistic item response model. The default is 0.
Details
The class of generalized logistic link functions contain the most important link functions using the specifications (Stukel, 1988):
logistic link function L: L(x)≈G(α1=0,α2=0)[x]
probit link function Φ: Φ(x)≈G(α1=0.165,α2=0.165)[1.47x]
loglog link function H: H(x)≈G(α1=−0.037,α2=0.62)[−0.39+1.20x−0.007x2]
cloglog link function H: H(x)≈G(α1=0.62,α2=−0.037)[0.54+1.64x+0.28x2+0.046x3]
References
Stukel, T. A. (1988). Generalized logistic models. Journal of the American Statistical Association, 83(402), 426-431. doi:10.1080/01621459.1988.10478613
Examples
sirt::pgenlogis( x=c(-.3, 0, .25, 1 ), alpha1=0, alpha2=.6 )
## [1] 0.4185580 0.5000000 0.5621765 0.7310586
####################################################################
# compare link functions
x <- seq( -3,3, .1 )
#***
# logistic link
y <- sirt::pgenlogis( x, alpha1=0, alpha2=0 )
plot( x, stats::plogis(x), type="l", main="Logistic Link", lwd=2)
points( x, y, pch=1, col=2 )
#***
# probit link
round( sirt::genlogis.moments( alpha1=.165, alpha2=.165 ), 3 )
## M SD Var
## 0.000 1.472 2.167
# SD of generalized logistic link function is 1.472
y <- sirt::pgenlogis( x * 1.47, alpha1=.165, alpha2=.165 )
plot( x, stats::pnorm(x), type="l", main="Probit Link", lwd=2)
points( x, y, pch=1, col=2 )
#***
# loglog link
y <- sirt::pgenlogis( -.39 + 1.20*x -.007*x^2, alpha1=-.037, alpha2=.62 )
plot( x, exp( - exp( -x ) ), type="l", main="Loglog Link", lwd=2,
ylab="loglog(x)=exp(-exp(-x))" )
points( x, y, pch=17, col=2 )
#***
# cloglog link
y <- sirt::pgenlogis( .54+1.64*x +.28*x^2 + .046*x^3, alpha1=.062, alpha2=-.037 )
plot( x, 1-exp( - exp(x) ), type="l", main="Cloglog Link", lwd=2,
ylab="loglog(x)=1-exp(-exp(x))" )
points( x, y, pch=17, col=2 )