Estimation of the Partial Credit Model using the Eigenvector Method
rasch.evm.pcm.Rd
This function performs the eigenvector approach to estimate item parameters which is based on a pairwise estimation approach (Garner & Engelhard, 2002). No assumption about person parameters is required for item parameter estimation. Statistical inference is performed by Jackknifing. If a group identifier is provided, tests for differential item functioning are performed.
Arguments
- dat
Data frame with dichotomous or polytomous item responses
- jackunits
A number of Jackknife units (if an integer is provided as the argument value) or a vector in which the Jackknife units are already defined.
- weights
Optional vector of sample weights
- pid
Optional vector of person identifiers
- group
Optional vector of group identifiers. In this case, item parameters are group wise estimated and tests for differential item functioning are performed.
- powB
Power created in \(B\) matrix which is the basis of parameter estimation
- adj_eps
Adjustment parameter for person parameter estimation (see
mle.pcm.group
)- progress
An optional logical indicating whether progress should be displayed
- object
Object of class
rasch.evm.pcm
- digits
Number of digits after decimals for rounding in
summary
.- file
Optional file name if
summary
should be sunk into a file.- ...
Further arguments to be passed
Value
A list with following entries
- item
Data frame with item parameters. The item parameter estimate is denoted by
est
while a Jackknife bias-corrected estimate isest_jack
. The Jackknife standard error isse
.- b
Item threshold parameters
- person
Data frame with person parameters obtained (MLE)
- B
Paired comparison matrix
- D
Transformed paired comparison matrix
- coef
Vector of estimated coefficients
- vcov
Covariance matrix of estimated item parameters
- JJ
Number of jackknife units
- JJadj
Reduced number of jackknife units
- powB
Used power of comparison matrix \(B\)
- maxK
Maximum number of categories per item
- G
Number of groups
- desc
Some descriptives
- difstats
Statistics for differential item functioning if
group
is provided as an argument
References
Choppin, B. (1985). A fully conditional estimation procedure for Rasch Model parameters. Evaluation in Education, 9, 29-42.
Garner, M., & Engelhard, G. J. (2002). An eigenvector method for estimating item parameters of the dichotomous and polytomous Rasch models. Journal of Applied Measurement, 3, 107-128.
Wang, J., & Engelhard, G. (2014). A pairwise algorithm in R for rater-mediated assessments. Rasch Measurement Transactions, 28(1), 1457-1459.