Bias Correction of Item Parameters for Joint Maximum Likelihood Estimation in the Rasch model
rasch.jml.biascorr.Rd
This function computes an analytical bias correction for the Rasch model according to the method of Arellano and Hahn (2007).
Arguments
- jmlobj
An object which is the output of the
rasch.jml
function- itemfac
Number of items which are used for bias correction. By default it is the average number of item responses per person.
Value
A list with following entries
- b.biascorr
Matrix of item difficulty estimates. The column
b.analytcorr1
contains item difficulties by analytical bias correction of Method 1 in Arellano and Hahn (2007) whereasb.analytcorr2
corresponds to Method 2.- b.bias1
Estimated bias by Method 1
- b.bias2
Estimated bias by Method 2
- itemfac
Number of items which are used as the factor for bias correction
References
Arellano, M., & Hahn, J. (2007). Understanding bias in nonlinear panel models: Some recent developments. In R. Blundell, W. Newey & T. Persson (Eds.): Advances in Economics and Econometrics, Ninth World Congress, Cambridge University Press.
See also
See rasch.jml.jackknife1
for bias correction based on
Jackknife.
See also the bife R package for analytical bias corrections.
Examples
#############################################################################
# EXAMPLE 1: Dataset Reading
#############################################################################
data(data.read)
dat <- data( data.read )
# estimate Rasch model
mod <- sirt::rasch.jml( data.read )
# JML with analytical bias correction
res1 <- sirt::rasch.jml.biascorr( jmlobj=mod )
print( res1$b.biascorr, digits=3 )
## b.JML b.JMLcorr b.analytcorr1 b.analytcorr2
## 1 -2.0086 -1.8412 -1.908 -1.922
## 2 -1.1121 -1.0194 -1.078 -1.088
## 3 -0.0718 -0.0658 -0.150 -0.127
## 4 0.5457 0.5002 0.393 0.431
## 5 -0.9504 -0.8712 -0.937 -0.936
## [...]