Estimation of Reliability for Confirmatory Factor Analyses Based on Dichotomous Data
reliability.nonlinearSEM.Rd
This function estimates a model based reliability using confirmatory factor analysis (Green & Yang, 2009).
Arguments
- facloadings
Matrix of factor loadings
- thresh
Vector of thresholds
- resid.cov
Matrix of residual covariances
- cor.factors
Optional matrix of covariances (correlations) between factors. The default is a diagonal matrix with variances of 1.
References
Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika, 74, 155-167.
See also
This function is used in greenyang.reliability
.
Examples
#############################################################################
# EXAMPLE 1: Reading data set
#############################################################################
data(data.read)
dat <- data.read
I <- ncol(dat)
# define item clusters
itemcluster <- rep( 1:3, each=4)
error.corr <- diag(1,ncol(dat))
for ( ii in 1:3){
ind.ii <- which( itemcluster==ii )
error.corr[ ind.ii, ind.ii ] <- ii
}
# estimate the model with error correlations
mod1 <- sirt::rasch.pml3( dat, error.corr=error.corr)
summary(mod1)
# extract item parameters
thresh <- - matrix( mod1$item$a * mod1$item$b, I, 1 )
A <- matrix( mod1$item$a * mod1$item$sigma, I, 1 )
# extract estimated correlation matrix
corM <- mod1$eps.corrM
# compute standardized factor loadings
facA <- 1 / sqrt( A^2 + 1 )
resvar <- 1 - facA^2
covM <- outer( sqrt(resvar[,1]), sqrt(resvar[,1] ) ) * corM
facloadings <- A *facA
# estimate reliability
rel1 <- sirt::reliability.nonlinearSEM( facloadings=facloadings, thresh=thresh,
resid.cov=covM)
rel1$omega.rel