Skip to contents

This function estimates the unidimensional rater facets model (Lincare, 1994) and an extension to slopes (see Details; Robitzsch & Steinfeld, 2018). The estimation is conducted by an EM algorithm employing marginal maximum likelihood.

Usage

rm.facets(dat, pid=NULL, rater=NULL, Qmatrix=NULL, theta.k=seq(-9, 9, len=30),
    est.b.rater=TRUE, est.a.item=FALSE, est.a.rater=FALSE, rater_item_int=FALSE,
    est.mean=FALSE, tau.item.fixed=NULL, a.item.fixed=NULL, b.rater.fixed=NULL,
    a.rater.fixed=NULL, b.rater.center=2, a.rater.center=2, a.item.center=2, a_lower=.05,
    a_upper=10, reference_rater=NULL, max.b.increment=1, numdiff.parm=0.00001,
    maxdevchange=0.1, globconv=0.001, maxiter=1000, msteps=4, mstepconv=0.001,
    PEM=FALSE, PEM_itermax=maxiter)

# S3 method for rm.facets
summary(object, file=NULL, ...)

# S3 method for rm.facets
anova(object,...)

# S3 method for rm.facets
logLik(object,...)

# S3 method for rm.facets
IRT.irfprob(object,...)

# S3 method for rm.facets
IRT.factor.scores(object, type="EAP", ...)

# S3 method for rm.facets
IRT.likelihood(object,...)

# S3 method for rm.facets
IRT.posterior(object,...)

# S3 method for rm.facets
IRT.modelfit(object,...)

# S3 method for IRT.modelfit.rm.facets
summary(object, ...)

## function for processing data
rm_proc_data( dat, pid, rater, rater_item_int=FALSE, reference_rater=NULL )

Arguments

dat

Original data frame. Ratings on variables must be in rows, i.e. every row corresponds to a person-rater combination.

pid

Person identifier.

rater

Rater identifier

Qmatrix

An optional Q-matrix. If this matrix is not provided, then by default the ordinary scoring of categories (from 0 to the maximum score of \(K\)) is used.

theta.k

A grid of theta values for the ability distribution.

est.b.rater

Should the rater severities \(b_r\) be estimated?

est.a.item

Should the item slopes \(a_i\) be estimated?

est.a.rater

Should the rater slopes \(a_r\) be estimated?

rater_item_int

Logical indicating whether rater-item-interactions should be modeled.

est.mean

Optional logical indicating whether the mean of the trait distribution should be estimated.

tau.item.fixed

Matrix with fixed \(\tau\) parameters. Non-fixed parameters must be declared by NA values.

a.item.fixed

Vector with fixed item discriminations

b.rater.fixed

Vector with fixed rater intercept parameters

a.rater.fixed

Vector with fixed rater discrimination parameters

b.rater.center

Centering method for rater intercept parameters. The value 0 corresponds to no centering, the values 1 and 2 to different methods to ensure that they sum to zero.

a.rater.center

Centering method for rater discrimination parameters. The value 0 corresponds to no centering, the values 1 and 2 to different methods to ensure that their product equals one.

a.item.center

Centering method for item discrimination parameters. The value 0 corresponds to no centering, the values 1 and 2 to different methods to ensure that their product equals one.

a_lower

Lower bound for \(a\) parameters

a_upper

Upper bound for \(a\) parameters

reference_rater

Identifier for rater as a reference rater for which a fixed rater mean of 0 and a fixed rater slope of 1 is assumed.

max.b.increment

Maximum increment of item parameters during estimation

numdiff.parm

Numerical differentiation step width

maxdevchange

Maximum relative deviance change as a convergence criterion

globconv

Maximum parameter change

maxiter

Maximum number of iterations

msteps

Maximum number of iterations during an M step

mstepconv

Convergence criterion in an M step

PEM

Logical indicating whether the P-EM acceleration should be applied (Berlinet & Roland, 2012).

PEM_itermax

Number of iterations in which the P-EM method should be applied.

object

Object of class rm.facets

file

Optional file name in which summary should be written.

type

Factor score estimation method. Factor score types "EAP", "MLE" and "WLE" are supported.

...

Further arguments to be passed

Details

This function models ratings \(X_{pri}\) for person \(p\), rater \(r\) and item \(i\) and category \(k\) (see also Robitzsch & Steinfeld, 2018; Uto & Ueno, 2010; Wu, 2017) $$P( X_{pri}=k | \theta_p ) \propto \exp( a_i a_r q_{ik} \theta_p - q_{ik} b_r - \tau_{ik} ) \quad, \quad \theta_p \sim N( 0, \sigma^2 )$$ By default, the scores in the \(Q\) matrix are \(q_{ik}=k\). Item slopes \(a_i\) and rater slopes \(a_r\) are standardized such that their product equals one, i.e. \( \prod_i a_i=\prod_r a_r=1\).

Value

A list with following entries:

deviance

Deviance

ic

Information criteria and number of parameters

item

Data frame with item parameters

rater

Data frame with rater parameters

person

Data frame with person parameters: EAP and corresponding standard errors

EAP.rel

EAP reliability

mu

Mean of the trait distribution

sigma

Standard deviation of the trait distribution

theta.k

Grid of theta values

pi.k

Fitted distribution at theta.k values

tau.item

Item parameters \(\tau_{ik}\)

se.tau.item

Standard error of item parameters \(\tau_{ik}\)

a.item

Item slopes \(a_i\)

se.a.item

Standard error of item slopes \(a_i\)

delta.item

Delta item parameter. See pcm.conversion.

b.rater

Rater severity parameter \(b_r\)

se.b.rater

Standard error of rater severity parameter \(b_r\)

a.rater

Rater slope parameter \(a_r\)

se.a.rater

Standard error of rater slope parameter \(a_r\)

f.yi.qk

Individual likelihood

f.qk.yi

Individual posterior distribution

probs

Item probabilities at grid theta.k

n.ik

Expected counts

maxK

Maximum number of categories

procdata

Processed data

iter

Number of iterations

ipars.dat2

Item parameters for expanded dataset dat2

...

Further values

References

Berlinet, A. F., & Roland, C. (2012). Acceleration of the EM algorithm: P-EM versus epsilon algorithm. Computational Statistics & Data Analysis, 56(12), 4122-4137.

Linacre, J. M. (1994). Many-Facet Rasch Measurement. Chicago: MESA Press.

Robitzsch, A., & Steinfeld, J. (2018). Item response models for human ratings: Overview, estimation methods, and implementation in R. Psychological Test and Assessment Modeling, 60(1), 101-139.

Uto, M., & Ueno, M. (2016). Item response theory for peer assessment. IEEE Transactions on Learning Technologies, 9(2), 157-170.

Wu, M. (2017). Some IRT-based analyses for interpreting rater effects. Psychological Test and Assessment Modeling, 59(4), 453-470.

Note

If the trait standard deviation sigma strongly differs from 1, then a user should investigate the sensitivity of results using different theta integration points theta.k.

See also

See also the TAM package for the estimation of more complicated facet models.

See rm.sdt for estimating a hierarchical rater model.

Examples

#############################################################################
# EXAMPLE 1: Partial Credit Model and Generalized partial credit model
#                   5 items and 1 rater
#############################################################################
data(data.ratings1)
dat <- data.ratings1

# select rater db01
dat <- dat[ paste(dat$rater)=="db01", ]

#****  Model 1: Partial Credit Model
mod1 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], pid=dat$idstud )

#****  Model 2: Generalized Partial Credit Model
mod2 <- sirt::rm.facets( dat[, paste0( "k",1:5) ],  pid=dat$idstud, est.a.item=TRUE)

summary(mod1)
summary(mod2)

if (FALSE) {
#############################################################################
# EXAMPLE 2: Facets Model: 5 items, 7 raters
#############################################################################

data(data.ratings1)
dat <- data.ratings1

#****  Model 1: Partial Credit Model: no rater effects
mod1 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater,
             pid=dat$idstud, est.b.rater=FALSE )

#****  Model 2: Partial Credit Model: intercept rater effects
mod2 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud)

# extract individual likelihood
lmod1 <- IRT.likelihood(mod1)
str(lmod1)
# likelihood value
logLik(mod1)
# extract item response functions
pmod1 <- IRT.irfprob(mod1)
str(pmod1)
# model comparison
anova(mod1,mod2)
# absolute and relative model fit
smod1 <- IRT.modelfit(mod1)
summary(smod1)
smod2 <- IRT.modelfit(mod2)
summary(smod2)
IRT.compareModels( smod1, smod2 )
# extract factor scores (EAP is the default)
IRT.factor.scores(mod2)
# extract WLEs
IRT.factor.scores(mod2, type="WLE")

#****  Model 2a: compare results with TAM package
#   Results should be similar to Model 2
library(TAM)
mod2a <- TAM::tam.mml.mfr( resp=dat[, paste0( "k",1:5) ],
             facets=dat[, "rater", drop=FALSE],
             pid=dat$pid, formulaA=~ item*step + rater )

#****  Model 2b: Partial Credit Model: some fixed parameters
# fix rater parameters for raters 1, 4 and 5
b.rater.fixed <- rep(NA,7)
b.rater.fixed[ c(1,4,5) ] <- c(1,-.8,0)  # fixed parameters
# fix item parameters of first and second item
tau.item.fixed <- round( mod2$tau.item, 1 )    # use parameters from mod2
tau.item.fixed[ 3:5, ] <- NA    # free item parameters of items 3, 4 and 5
mod2b <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater,
             b.rater.fixed=b.rater.fixed, tau.item.fixed=tau.item.fixed,
             est.mean=TRUE, pid=dat$idstud)
summary(mod2b)

#****  Model 3: estimated rater slopes
mod3 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater,
            est.a.rater=TRUE)

#****  Model 4: estimated item slopes
mod4 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater,
             pid=dat$idstud, est.a.item=TRUE)

#****  Model 5: estimated rater and item slopes
mod5 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater,
             pid=dat$idstud, est.a.rater=TRUE, est.a.item=TRUE)
summary(mod1)
summary(mod2)
summary(mod2a)
summary(mod3)
summary(mod4)
summary(mod5)

#****  Model 5a: Some fixed parameters in Model 5
# fix rater b parameters for raters 1, 4 and 5
b.rater.fixed <- rep(NA,7)
b.rater.fixed[ c(1,4,5) ] <- c(1,-.8,0)
# fix rater a parameters for first four raters
a.rater.fixed <- rep(NA,7)
a.rater.fixed[ c(1,2,3,4) ] <- c(1.1,0.9,.85,1)
# fix item b parameters of first item
tau.item.fixed <- matrix( NA, nrow=5, ncol=3 )
tau.item.fixed[ 1, ] <- c(-2,-1.5, 1 )
# fix item a parameters
a.item.fixed <- rep(NA,5)
a.item.fixed[ 1:4 ] <- 1
# estimate model
mod5a <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater,
             pid=dat$idstud, est.a.rater=TRUE, est.a.item=TRUE,
             tau.item.fixed=tau.item.fixed, b.rater.fixed=b.rater.fixed,
             a.rater.fixed=a.rater.fixed, a.item.fixed=a.item.fixed,
             est.mean=TRUE)
summary(mod5a)

#****  Model 6: Estimate rater model with reference rater 'db03'
mod6 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, est.a.item=TRUE,
             est.a.rater=TRUE, pid=dat$idstud, reference_rater="db03" )
summary(mod6)

#**** Model 7: Modelling rater-item-interactions
mod7 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, est.a.item=FALSE,
             est.a.rater=TRUE, pid=dat$idstud, reference_rater="db03",
             rater_item_int=TRUE)
summary(mod7)
}