Utility Functions in sirt
sirt-utilities.Rd
Utility functions in sirt.
Usage
# bounds entries in a vector
bounds_parameters( pars, lower=NULL, upper=NULL)
# improper density function which always returns a value of 1
dimproper(x)
# generalized inverse of a symmetric function
ginverse_sym(A, eps=1E-8)
# hard thresholding function
hard_thresholding(x, lambda)
# soft thresholding function
soft_thresholding(x, lambda)
# power function x^a, like in Cpp
pow(x, a)
# trace of a matrix
tracemat(A)
#** matrix functions
sirt_matrix2(x, nrow) # matrix() function with byrow=TRUE
sirt_colMeans(x, na.rm=TRUE)
sirt_colSDs(x, na.rm=TRUE)
sirt_colMins(x, na.rm=TRUE)
sirt_colMaxs(x, na.rm=TRUE)
sirt_colMedians(x, na.rm=TRUE)
#* normalize vector to have sum of one
sirt_sum_norm(x, na.rm=TRUE)
#* discrete normal distribution
sirt_dnorm_discrete(x, mean=0, sd=1, ...)
# plyr::rbind.fill implementation in sirt
sirt_rbind_fill(x, y)
# Fisher-z transformation, see psych::fisherz
sirt_fisherz(rho)
# inverse Fisher-z transformation, see psych::fisherz2r
sirt_antifisherz(z)
# smooth approximation of the absolute value function
sirt_abs_smooth(x, deriv=0, eps=1e-4)
# permutations with replacement
sirt_permutations(r,v)
#-> is equivalent to gtools::permutations(n=length(v), r=D, v=v, repeats.allowed=TRUE)
# attach all elements in a list in a specified environment
sirt_attach_list_elements(x, envir)
# switch between stats::optim and stats::nlminb
sirt_optimizer(optimizer, par, fn, grad=NULL, method="L-BFGS-B", hessian=TRUE,
control=list(), ...)
# print objects in a summary
sirt_summary_print_objects(obji, from=NULL, to=NULL, digits=3, rownames_null=TRUE,
grep_string=NULL)
# print package version and R session
sirt_summary_print_package_rsession(pack)
# print package version
sirt_summary_print_package(pack)
# print R session
sirt_summary_print_rsession()
# print call
sirt_summary_print_call(CALL)
# print a data frame x with fixed numbers of digits after the decimal
print_digits(x, digits=NULL)
# discrete inverse function
sirt_rcpp_discrete_inverse(x0, y0, y)
# move variables in a data frame
move_variables_df(x, after_var, move_vars)
Arguments
- pars
Numeric vector
- lower
Numeric vector
- upper
Numeric vector
- x
Numeric vector or a matrix or a list
- eps
Numerical. Shrinkage parameter of eigenvalue in
ginverse_sym
- a
Numeric vector
- lambda
Numeric value
- A
Matrix
- nrow
Integer
- na.rm
Logical
- mean
Numeric
- sd
Numeric
- y
Matrix
- rho
Numeric
- deriv
Integer indicating the order of derivative
- z
Numeric
- r
Integer
- v
Vector
- envir
Environment
- optimizer
Can be one of the following optimizers:
optim
,nlminb
,bobyqa
(from the minqa packlage),Rvmmin
(from the optimx package) ornloptr
(from the nloptr package using the argumentopts$algorithm="NLOPT_LD_MMA"
).- par
Initial parameter
- fn
Function
- grad
Gradient function
- method
Optimization method
- hessian
Logical
- control
Control list for R optimizers
- ...
Further arguments to be passed
- obji
Data frame
- from
Integer
- to
Integer
- digits
Integer
- rownames_null
Logical
- grep_string
String
- pack
Package name
- CALL
Call statement
- x0
Vector
- y0
Vector
- after_var
String indicating variable name after which variable specified variables in
move_vars
should be moved- move_vars
Variables which should be moved after
after_var
Examples
#############################################################################
## EXAMPLE 1: Trace of a matrix
#############################################################################
set.seed(86)
A <- matrix( stats::runif(4), 2,2 )
tracemat(A)
sum(diag(A)) #=sirt::tracemat(A)
#############################################################################
## EXAMPLE 2: Power function
#############################################################################
x <- 2.3
a <- 1.7
pow(x=x,a=a)
x^a #=sirt::pow(x,a)
#############################################################################
## EXAMPLE 3: Soft and hard thresholding function (e.g. in LASSO estimation)
#############################################################################
x <- seq(-2, 2, length=100)
y <- sirt::soft_thresholding( x, lambda=.5)
graphics::plot( x, y, type="l")
z <- sirt::hard_thresholding( x, lambda=.5)
graphics::lines( x, z, lty=2, col=2)
#############################################################################
## EXAMPLE 4: Bounds on parameters
#############################################################################
pars <- c(.721, .346)
bounds_parameters( pars=pars, lower=c(-Inf, .5), upper=c(Inf,1) )
#############################################################################
## EXAMPLE 5: Smooth approximation of absolute value function
#############################################################################
x <- seq(-1,1,len=100)
graphics::plot(x, abs(x), lwd=2, col=1, lty=1, type="l", ylim=c(-1,1) )
# smooth approximation
tt <- 2
graphics::lines(x, sirt::sirt_abs_smooth(x), lty=tt, col=tt, lwd=2)
# first derivative
tt <- 3
graphics::lines(x, sirt::sirt_abs_smooth(x, deriv=1), lty=tt, col=tt, lwd=2)
# second derivative
tt <- 4
graphics::lines(x, sirt::sirt_abs_smooth(x, deriv=2), lty=tt, col=tt, lwd=2)
# analytic computation of first and second derivative
stats::deriv( ~ sqrt(x^2 + eps), namevec="x", hessian=TRUE )
if (FALSE) {
#############################################################################
## EXAMPLE 6: Permutations with replacement
#############################################################################
D <- 4
v <- 0:1
sirt::sirt_permutations(r=D, v=v)
gtools::permutations(n=length(v), r=D, v=v, repeats.allowed=TRUE)
}