Multidimensional Noncompensatory, Compensatory and Partially Compensatory Item Response Model
smirt.Rd
This function estimates the noncompensatory and compensatory multidimensional item response model (Bolt & Lall, 2003; Reckase, 2009) as well as the partially compensatory item response model (Spray et al., 1990) for dichotomous data.
Usage
smirt(dat, Qmatrix, irtmodel="noncomp", est.b=NULL, est.a=NULL,
est.c=NULL, est.d=NULL, est.mu.i=NULL, b.init=NULL, a.init=NULL,
c.init=NULL, d.init=NULL, mu.i.init=NULL, Sigma.init=NULL,
b.lower=-Inf, b.upper=Inf, a.lower=-Inf, a.upper=Inf,
c.lower=-Inf, c.upper=Inf, d.lower=-Inf, d.upper=Inf,
theta.k=seq(-6,6,len=20), theta.kDES=NULL,
qmcnodes=0, mu.fixed=NULL, variance.fixed=NULL, est.corr=FALSE,
max.increment=1, increment.factor=1, numdiff.parm=0.0001,
maxdevchange=0.1, globconv=0.001, maxiter=1000, msteps=4,
mstepconv=0.001)
# S3 method for smirt
summary(object,...)
# S3 method for smirt
anova(object,...)
# S3 method for smirt
logLik(object,...)
# S3 method for smirt
IRT.irfprob(object,...)
# S3 method for smirt
IRT.likelihood(object,...)
# S3 method for smirt
IRT.posterior(object,...)
# S3 method for smirt
IRT.modelfit(object,...)
# S3 method for IRT.modelfit.smirt
summary(object,...)
Arguments
- dat
Data frame with dichotomous item responses
- Qmatrix
The Q-matrix which specifies the loadings to be estimated
- irtmodel
The item response model. Options are the noncompensatory model (
"noncomp"
), the compensatory model ("comp"
) and the partially compensatory model ("partcomp"
). See Details for more explanations.- est.b
An integer matrix (if
irtmodel="noncomp"
) or integer vector (ifirtmodel="comp"
) for \(b\) parameters to be estimated- est.a
An integer matrix for \(a\) parameters to be estimated. If
est.a="2PL"
, then all item loadings will be estimated and the variances are set to one (and thereforeest.corr=TRUE
).- est.c
An integer vector for \(c\) parameters to be estimated
- est.d
An integer vector for \(d\) parameters to be estimated
- est.mu.i
An integer vector for \(\mu_i\) parameters to be estimated
- b.init
Initial \(b\) coefficients. For
irtmodel="noncomp"
it must be a matrix, forirtmodel="comp"
it is a vector.- a.init
Initial \(a\) coefficients arranged in a matrix
- c.init
Initial \(c\) coefficients
- d.init
Initial \(d\) coefficients
- mu.i.init
Initial \(d\) coefficients
- Sigma.init
Initial covariance matrix \(\Sigma\)
- b.lower
Lower bound for \(b\) parameter
- b.upper
Upper bound for \(b\) parameter
- a.lower
Lower bound for \(a\) parameter
- a.upper
Upper bound for \(a\) parameter
- c.lower
Lower bound for \(c\) parameter
- c.upper
Upper bound for \(c\) parameter
- d.lower
Lower bound for \(d\) parameter
- d.upper
Upper bound for \(d\) parameter
- theta.k
Vector of discretized trait distribution. This vector is expanded in all dimensions by using the
base::expand.grid
function. If a user specifies a design matrixtheta.kDES
of transformed \(\bold{\theta}_p\) values (see Details and Examples), thentheta.k
must be a matrix, too.- theta.kDES
An optional design matrix. This matrix will differ from the ordinary theta grid in case of nonlinear item response models.
- qmcnodes
Number of integration nodes for quasi Monte Carlo integration (see Pan & Thompson, 2007; Gonzales et al., 2006). Integration points are obtained by using the function
qmc.nodes
. Note that when using quasi Monte Carlo nodes, no theta design matrixtheta.kDES
can be specified. See Example 1, Model 11.- mu.fixed
Matrix with fixed entries in the mean vector. By default, all means are set to zero.
- variance.fixed
Matrix (with rows and three columns) with fixed entries in the covariance matrix (see Examples). The entry \(c_{kd}\) of the covariance between dimensions \(k\) and \(d\) is set to \(c_0\) iff
variance.fixed
has a row with a \(k\) in the first column, a \(d\) in the second column and the value \(c_0\) in the third column.- est.corr
Should only a correlation matrix instead of a covariance matrix be estimated?
- max.increment
Maximum increment
- increment.factor
A value (larger than one) which defines the extent of the decrease of the maximum increment of item parameters in every iteration. The maximum increment in iteration
iter
is defined asmax.increment*increment.factor^(-iter)
wheremax.increment=1
. Using a value larger than 1 helps to reach convergence in some non-converging analyses (use values of 1.01, 1.02 or even 1.05). See also Example 1 Model 2a.- numdiff.parm
Numerical differentiation parameter
- maxdevchange
Convergence criterion for change in relative deviance
- globconv
Global convergence criterion for parameter change
- maxiter
Maximum number of iterations
- msteps
Number of iterations within a M step
- mstepconv
Convergence criterion within a M step
- object
Object of class
smirt
- ...
Further arguments to be passed
Details
The noncompensatory item response model (irtmodel="noncomp"
;
e.g. Bolt & Lall, 2003) is defined as
$$P(X_{pi}=1 | \bold{\theta}_p )=c_i + (d_i - c_i )
\prod_l invlogit( a_{il} q_{il} \theta_{pl} - b_{il} ) $$
where \(i\), \(p\), \(l\) denote items, persons and dimensions
respectively.
The compensatory item response model (irtmodel="comp"
) is defined by
$$P(X_{pi}=1 | \bold{\theta}_p )=c_i + (d_i - c_i )
invlogit( \sum_l a_{il} q_{il} \theta_{pl} - b_{i} ) $$
Using a design matrix theta.kDES
the model can be made even more general
in a model which is linear in item parameters
$$P(X_{pi}=1 | \bold{\theta}_p )=c_i + (d_i - c_i )
invlogit( \sum_l a_{il} q_{il} t_l ( \bold{ \theta_{p} } ) - b_{i} ) $$
with known functions \(t_l\) of the trait vector \(\bold{\theta}_p\).
Fixed values of the functions \(t_l\) are specified in the
\(\bold{\theta}_p\) design matrix theta.kDES
.
The partially compensatory item response model (irtmodel="partcomp"
)
is defined by
$$P(X_{pi}=1 | \bold{\theta}_p )=c_i + (d_i - c_i )
\frac{ \exp \left( \sum_l ( a_{il} q_{il} \theta_{pl} - b_{il} ) \right) }
{ \mu_i \prod_l ( 1 + \exp ( a_{il} q_{il} \theta_{pl} - b_{il} ) ) +
( 1- \mu_i) ( 1 + \exp \left( \sum_l ( a_{il} q_{il} \theta_{pl} - b_{il} ) \right) )
} $$
with item parameters \(\mu_i\) indicating the degree of compensatory.
\(\mu_i=1\) indicates a noncompensatory model while \(\mu_i=0\)
indicates a (fully) compensatory model.
The models are estimated by an EM algorithm employing marginal maximum likelihood.
Value
A list with following entries:
- deviance
Deviance
- ic
Information criteria
- item
Data frame with item parameters
- person
Data frame with person parameters. It includes the person mean of all item responses (
M
; percentage correct of all non-missing items), the EAP estimate and its corresponding standard error for all dimensions (EAP
andSE.EAP
) and the maximum likelihood estimate as well as the mode of the posterior distribution (MLE
andMAP
).- EAP.rel
EAP reliability
- mean.trait
Means of trait
- sd.trait
Standard deviations of trait
- Sigma
Trait covariance matrix
- cor.trait
Trait correlation matrix
- b
Matrix (vector) of \(b\) parameters
- se.b
Matrix (vector) of standard errors \(b\) parameters
- a
Matrix of \(a\) parameters
- se.a
Matrix of standard errors of \(a\) parameters
- c
Vector of \(c\) parameters
- se.c
Vector of standard errors of \(c\) parameters
- d
Vector of \(d\) parameters
- se.d
Vector of standard errors of \(d\) parameters
- mu.i
Vector of \(\mu_i\) parameters
- se.mu.i
Vector of standard errors of \(\mu_i\) parameters
- f.yi.qk
Individual likelihood
- f.qk.yi
Individual posterior
- probs
Probabilities of item response functions evaluated at
theta.k
- n.ik
Expected counts
- iter
Number of iterations
- dat2
Processed data set
- dat2.resp
Data set of response indicators
- I
Number of items
- D
Number of dimensions
- K
Maximum item response score
- theta.k
Used theta integration grid
- pi.k
Distribution function evaluated at
theta.k
- irtmodel
Used IRT model
- Qmatrix
Used Q-matrix
References
Bolt, D. M., & Lall, V. F. (2003). Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo. Applied Psychological Measurement, 27, 395-414.
Gonzalez, J., Tuerlinckx, F., De Boeck, P., & Cools, R. (2006). Numerical integration in logistic-normal models. Computational Statistics & Data Analysis, 51, 1535-1548.
Pan, J., & Thompson, R. (2007). Quasi-Monte Carlo estimation in generalized linear mixed models. Computational Statistics & Data Analysis, 51, 5765-5775.
Reckase, M. (2009). Multidimensional item response theory. New York: Springer. doi:10.1007/978-0-387-89976-3
Spray, J. A., Davey, T. C., Reckase, M. D., Ackerman, T. A., & Carlson, J. E. (1990). Comparison of two logistic multidimensional item response theory models. ACT Research Report No. ACT-RR-ONR-90-8.
See also
See the mirt::mirt
and
itemtype="partcomp"
for estimating noncompensatory item response models
using the mirt package. See also mirt::mixedmirt
.
Other multidimensional IRT models can also be estimated
with rasch.mml2
and rasch.mirtlc
.
See itemfit.sx2
(CDM) for item fit
statistics.
See also the mirt and TAM packages for estimation of compensatory multidimensional item response models.
Examples
#############################################################################
## EXAMPLE 1: Noncompensatory and compensatory IRT models
#############################################################################
set.seed(997)
# (1) simulate data from a two-dimensional noncompensatory
# item response model
# -> increase number of iterations in all models!
N <- 1000 # number of persons
I <- 10 # number of items
theta0 <- rnorm( N, sd=1 )
theta1 <- theta0 + rnorm(N, sd=.7 )
theta2 <- theta0 + rnorm(N, sd=.7 )
Q <- matrix( 1, nrow=I,ncol=2 )
Q[ 1:(I/2), 2 ] <- 0
Q[ I,1] <- 0
b <- matrix( rnorm( I*2 ), I, 2 )
a <- matrix( 1, I, 2 )
# simulate data
prob <- dat <- matrix(0, nrow=N, ncol=I )
for (ii in 1:I){
prob[,ii] <- ( stats::plogis( theta1 - b[ii,1] ) )^Q[ii,1]
prob[,ii] <- prob[,ii] * ( stats::plogis( theta2 - b[ii,2] ) )^Q[ii,2]
}
dat[ prob > matrix( stats::runif( N*I),N,I) ] <- 1
colnames(dat) <- paste0("I",1:I)
#***
# Model 1: Noncompensatory 1PL model
mod1 <- sirt::smirt(dat, Qmatrix=Q, maxiter=10 ) # change number of iterations
summary(mod1)
if (FALSE) {
#***
# Model 2: Noncompensatory 2PL model
mod2 <- sirt::smirt(dat,Qmatrix=Q, est.a="2PL", maxiter=15 )
summary(mod2)
# Model 2a: avoid convergence problems with increment.factor
mod2a <- sirt::smirt(dat,Qmatrix=Q, est.a="2PL", maxiter=30, increment.factor=1.03)
summary(mod2a)
#***
# Model 3: some fixed c and d parameters different from zero or one
c.init <- rep(0,I)
c.init[ c(3,7)] <- .2
d.init <- rep(1,I)
d.init[c(4,8)] <- .95
mod3 <- sirt::smirt( dat, Qmatrix=Q, c.init=c.init, d.init=d.init )
summary(mod3)
#***
# Model 4: some estimated c and d parameters (in parameter groups)
est.c <- c.init <- rep(0,I)
c.estpars <- c(3,6,7)
c.init[ c.estpars ] <- .2
est.c[c.estpars] <- 1
est.d <- rep(0,I)
d.init <- rep(1,I)
d.estpars <- c(6,9)
d.init[ d.estpars ] <- .95
est.d[ d.estpars ] <- d.estpars # different d parameters
mod4 <- sirt::smirt(dat,Qmatrix=Q, est.c=est.c, c.init=c.init,
est.d=est.d, d.init=d.init )
summary(mod4)
#***
# Model 5: Unidimensional 1PL model
Qmatrix <- matrix( 1, nrow=I, ncol=1 )
mod5 <- sirt::smirt( dat, Qmatrix=Qmatrix )
summary(mod5)
#***
# Model 6: Unidimensional 2PL model
mod6 <- sirt::smirt( dat, Qmatrix=Qmatrix, est.a="2PL" )
summary(mod6)
#***
# Model 7: Compensatory model with between item dimensionality
# Note that the data is simulated under the noncompensatory condition
# Therefore Model 7 should have a worse model fit than Model 1
Q1 <- Q
Q1[ 6:10, 1] <- 0
mod7 <- sirt::smirt(dat,Qmatrix=Q1, irtmodel="comp", maxiter=30)
summary(mod7)
#***
# Model 8: Compensatory model with within item dimensionality
# assuming zero correlation between dimensions
variance.fixed <- as.matrix( cbind( 1,2,0) )
# set the covariance between the first and second dimension to zero
mod8 <- sirt::smirt(dat,Qmatrix=Q, irtmodel="comp", variance.fixed=variance.fixed,
maxiter=30)
summary(mod8)
#***
# Model 8b: 2PL model with starting values for a and b parameters
b.init <- rep(0,10) # set all item difficulties initially to zero
# b.init <- NULL
a.init <- Q # initialize a.init with Q-matrix
# provide starting values for slopes of first three items on Dimension 1
a.init[1:3,1] <- c( .55, .32, 1.3)
mod8b <- sirt::smirt(dat,Qmatrix=Q, irtmodel="comp", variance.fixed=variance.fixed,
b.init=b.init, a.init=a.init, maxiter=20, est.a="2PL" )
summary(mod8b)
#***
# Model 9: Unidimensional model with quadratic item response functions
# define theta
theta.k <- seq( - 6, 6, len=15 )
theta.k <- as.matrix( theta.k, ncol=1 )
# define design matrix
theta.kDES <- cbind( theta.k[,1], theta.k[,1]^2 )
# define Q-matrix
Qmatrix <- matrix( 0, I, 2 )
Qmatrix[,1] <- 1
Qmatrix[ c(3,6,7), 2 ] <- 1
colnames(Qmatrix) <- c("F1", "F1sq" )
# estimate model
mod9 <- sirt::smirt(dat,Qmatrix=Qmatrix, maxiter=50, irtmodel="comp",
theta.k=theta.k, theta.kDES=theta.kDES, est.a="2PL" )
summary(mod9)
#***
# Model 10: Two-dimensional item response model with latent interaction
# between dimensions
theta.k <- seq( - 6, 6, len=15 )
theta.k <- expand.grid( theta.k, theta.k ) # expand theta to 2 dimensions
# define design matrix
theta.kDES <- cbind( theta.k, theta.k[,1]*theta.k[,2] )
# define Q-matrix
Qmatrix <- matrix( 0, I, 3 )
Qmatrix[,1] <- 1
Qmatrix[ 6:10, c(2,3) ] <- 1
colnames(Qmatrix) <- c("F1", "F2", "F1iF2" )
# estimate model
mod10 <- sirt::smirt(dat,Qmatrix=Qmatrix,irtmodel="comp", theta.k=theta.k,
theta.kDES=theta.kDES, est.a="2PL" )
summary(mod10)
#****
# Model 11: Example Quasi Monte Carlo integration
Qmatrix <- matrix( 1, I, 1 )
mod11 <- sirt::smirt( dat, irtmodel="comp", Qmatrix=Qmatrix, qmcnodes=1000 )
summary(mod11)
#############################################################################
## EXAMPLE 2: Dataset Reading data.read
## Multidimensional models for dichotomous data
#############################################################################
data(data.read)
dat <- data.read
I <- ncol(dat) # number of items
#***
# Model 1: 3-dimensional 2PL model
# define Q-matrix
Qmatrix <- matrix(0,nrow=I,ncol=3)
Qmatrix[1:4,1] <- 1
Qmatrix[5:8,2] <- 1
Qmatrix[9:12,3] <- 1
# estimate model
mod1 <- sirt::smirt( dat, Qmatrix=Qmatrix, irtmodel="comp", est.a="2PL",
qmcnodes=1000, maxiter=20)
summary(mod1)
#***
# Model 2: 3-dimensional Rasch model
mod2 <- sirt::smirt( dat, Qmatrix=Qmatrix, irtmodel="comp",
qmcnodes=1000, maxiter=20)
summary(mod2)
#***
# Model 3: 3-dimensional 2PL model with uncorrelated dimensions
# fix entries in variance matrix
variance.fixed <- cbind( c(1,1,2), c(2,3,3), 0 )
# set the following covariances to zero: cov[1,2]=cov[1,3]=cov[2,3]=0
# estimate model
mod3 <- sirt::smirt( dat, Qmatrix=Qmatrix, irtmodel="comp", est.a="2PL",
variance.fixed=variance.fixed, qmcnodes=1000, maxiter=20)
summary(mod3)
#***
# Model 4: Bifactor model with one general factor (g) and
# uncorrelated specific factors
# define a new Q-matrix
Qmatrix1 <- cbind( 1, Qmatrix )
# uncorrelated factors
variance.fixed <- cbind( c(1,1,1,2,2,3), c(2,3,4,3,4,4), 0 )
# The first dimension refers to the general factors while the other
# dimensions refer to the specific factors.
# The specification means that:
# Cov[1,2]=Cov[1,3]=Cov[1,4]=Cov[2,3]=Cov[2,4]=Cov[3,4]=0
# estimate model
mod4 <- sirt::smirt( dat, Qmatrix=Qmatrix1, irtmodel="comp", est.a="2PL",
variance.fixed=variance.fixed, qmcnodes=1000, maxiter=20)
summary(mod4)
#############################################################################
## EXAMPLE 3: Partially compensatory model
#############################################################################
#**** simulate data
set.seed(7656)
I <- 10 # number of items
N <- 2000 # number of subjects
Q <- matrix( 0, 3*I,2) # Q-matrix
Q[1:I,1] <- 1
Q[1:I + I,2] <- 1
Q[1:I + 2*I,1:2] <- 1
b <- matrix( stats::runif( 3*I *2, -2, 2 ), nrow=3*I, 2 )
b <- b*Q
b <- round( b, 2 )
mui <- rep(0,3*I)
mui[ seq(2*I+1, 3*I) ] <- 0.65
# generate data
dat <- matrix( NA, N, 3*I )
colnames(dat) <- paste0("It", 1:(3*I) )
# simulate item responses
library(mvtnorm)
theta <- mvtnorm::rmvnorm(N, mean=c(0,0), sigma=matrix( c( 1.2, .6,.6,1.6),2, 2 ) )
for (ii in 1:(3*I)){
# define probability
tmp1 <- exp( theta[,1] * Q[ii,1] - b[ii,1] + theta[,2] * Q[ii,2] - b[ii,2] )
# non-compensatory model
nco1 <- ( 1 + exp( theta[,1] * Q[ii,1] - b[ii,1] ) ) *
( 1 + exp( theta[,2] * Q[ii,2] - b[ii,2] ) )
co1 <- ( 1 + tmp1 )
p1 <- tmp1 / ( mui[ii] * nco1 + ( 1 - mui[ii] )*co1 )
dat[,ii] <- 1 * ( stats::runif(N) < p1 )
}
#*** Model 1: Joint mu.i parameter for all items
est.mu.i <- rep(0,3*I)
est.mu.i[ seq(2*I+1,3*I)] <- 1
mod1 <- sirt::smirt( dat, Qmatrix=Q, irtmodel="partcomp", est.mu.i=est.mu.i)
summary(mod1)
#*** Model 2: Separate mu.i parameter for all items
est.mu.i[ seq(2*I+1,3*I)] <- 1:I
mod2 <- sirt::smirt( dat, Qmatrix=Q, irtmodel="partcomp", est.mu.i=est.mu.i)
summary(mod2)
}