Weighted Likelihood Estimation of Person Abilities
wle.rasch.Rd
This function computes weighted likelihood estimates for dichotomous responses based on the Rasch model (Warm, 1989).
Arguments
- dat
An \(N \times I\) data frame of dichotomous item responses
- dat.resp
Optional data frame with dichotomous response indicators
- b
Vector of length \(I\) with fixed item difficulties
- itemweights
Optional vector of fixed item discriminations
- theta
Optional vector of initial person parameter estimates
- conv
Convergence criterion
- maxit
Maximal number of iterations
- wle.adj
Constant for WLE adjustment
- progress
Display progress?
Value
A list with following entries
- theta
Estimated weighted likelihood estimate
- dat.resp
Data frame with dichotomous response indicators. A one indicates an observed response, a zero a missing response. See also
dat.resp
in the list of arguments of this function.- p.ia
Matrix with expected item response, i.e. the probabilities \(P(X_{pi}=1|\theta_p )=invlogit( \theta_p - b_i )\).
- wle
WLE reliability (Adams, 2005)
References
Adams, R. J. (2005). Reliability as a measurement design effect. Studies in Educational Evaluation, 31, 162-172.
Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427-450.
See also
For standard errors of weighted likelihood estimates estimated via jackknife
see wle.rasch.jackknife
.
For a joint estimation of item and person parameters see the joint maximum
likelihood estimation method in rasch.jml
.
Examples
#############################################################################
# EXAMPLE 1: Dataset Reading
#############################################################################
data(data.read)
# estimate the Rasch model
mod <- sirt::rasch.mml2(data.read)
mod$item
# estmate WLEs
mod.wle <- sirt::wle.rasch( dat=data.read, b=mod$item$b )