srm_arbsrm.Rd
Provides least squares estimation of the bivariate social relations model with missing completely at random data (Bond & Malloy, 2018a). The code is basically taken from Bond and Malloy (2018b) and rewritten for reasons of computation time reduction.
srm_arbsrm(data, serror = TRUE, use_srm = TRUE) # S3 method for srm_arbsrm coef(object, ...) # S3 method for srm_arbsrm summary(object, digits=3, file=NULL, ...)
data | Rectangular dataset currently containing only one round robin group.
Bivariate observations are stacked one below the other (see
example dataset |
---|---|
serror | Logical indicating whether standard errors should be calculated. |
use_srm | Logical indicating whether the rewritten code ( |
object | Object of class |
file | Optional file name for summary output |
digits | Number of digits after decimal in summary output |
... | Further arguments to be passed |
List containing entries
Parameter summary table
Estimated parameters (as in Bond & Malloy, 2018b)
Estimated standard errors (as in Bond & Malloy, 2018b)
Bond, C. F., & Malloy, T. E. (2018a). Social relations analysis of dyadic data structure: The general case. In T. E. Malloy. Social relations modeling of behavior in dyads and groups (Ch. 14). Academic Press. doi: 10.1016/B978-0-12-811967-9.00014-X
Bond, C. F., & Malloy, T. E. (2018b). ARBSRM - The general social relations model. http://thomasemalloy.org/arbsrm-the-general-social-relations-model/.
If you use this function, please also cite Bond and Malloy (2018a).
Without missing data, ANOVA estimation can be conducted with the TripleR package.
############################################################################# # EXAMPLE 1: Bond and Malloy (2018) illustration dataset ############################################################################# data(data.bm2, package="srm") dat <- data.bm2 #- estimation mod1 <- srm::srm_arbsrm(dat) mod1$par_summary coef(mod1) summary(mod1) # \donttest{ #-- estimation with original Bond and Malloy code mod1a <- srm::srm_arbsrm(dat, use_srm=FALSE) summary(mod1a) # }