BIFIE.pathmodel.Rd
This function computes a path model. Predictors are allowed to possess measurement errors. Known measurement error variances (and covariances) or reliabilities can be specified by the user. Alternatively, a set of indicators can be defined for each latent variable, and for each imputed and replicated dataset the measurement error variance is determined by means of calculating the reliability Cronbachs alpha. Measurement errors are handled by adjusting covariance matrices (see Buonaccorsi, 2010, Ch. 5).
Object of class BIFIEdata
String including the model specification in
lavaan syntax. lavaan.model
also allows the
extended functionality in the
TAM::lavaanify.IRT
function.
Optional vector containing the reliabilities of each variable. This vector can also include only a subset of all variables.
Optional grouping variable(s)
Optional vector of grouping values. This can be omitted and grouping values will be determined automatically.
Optional logical indicating whether statistical inference based on replication should be employed.
Object of class BIFIE.pathmodel
Number of digits for rounding output
Further arguments to be passed
The following conventions are used as parameter labels in the output.
Y~X
is the regression coefficient of the regression from \(Y\)
on \(X\).
X->Z->Y
denotes the path coefficient from \(X\) to \(Y\)
passing the mediating variable \(Z\).
X-+>Y
denotes the total effect (of all paths) from \(X\) to \(Y\).
X-~>Y
denotes the sum of all indirect effects from \(X\) to \(Y\).
The parameter suffix _stand
refers to parameters for which
all variables are standardized.
A list with following entries
Data frame with unstandardized and standardized regression coefficients, path coefficients, total and indirect effects, residual variances, and \(R^2\)
Extensive output with all replicated statistics
More values
Buonaccorsi, J. P. (2010). Measurement error: Models, methods, and applications. CRC Press.
See the lavaan and lavaan.survey package.
For the lavaan
syntax, see
lavaan::lavaanify
and
TAM::lavaanify.IRT
if (FALSE) {
#############################################################################
# EXAMPLE 1: Path model data.bifie01
#############################################################################
data(data.bifie01)
dat <- data.bifie01
# create dataset with replicate weights and plausible values
bifieobj <- BIFIEsurvey::BIFIE.data.jack( data=dat, jktype="JK_TIMSS",
jkzone="JKCZONE", jkrep="JKCREP", wgt="TOTWGT",
pv_vars=c("ASMMAT","ASSSCI") )
#**************************************************************
#*** Model 1: Path model
lavmodel1 <- "
ASMMAT ~ ASBG07A + ASBG07B + ASBM03 + ASBM02A + ASBM02E
# define latent variable with 2nd and 3rd item in reversed scoring
ASBM03=~ 1*ASBM03A + (-1)*ASBM03B + (-1)*ASBM03C + 1*ASBM03D
ASBG07A ~ ASBM02E
ASBG07A ~~ .2*ASBG07A # measurement error variance of .20
ASBM02E ~~ .45*ASBM02E # measurement error variance of .45
ASBM02E ~ ASBM02A + ASBM02B
"
#--- Model 1a: model calculated by gender
mod1a <- BIFIEsurvey::BIFIE.pathmodel( bifieobj, lavmodel1, group="female" )
summary(mod1a)
#--- Model 1b: Input of some known reliabilities
reliability <- c( "ASBM02B"=.6, "ASBM02A"=.8 )
mod1b <- BIFIEsurvey::BIFIE.pathmodel( bifieobj, lavmodel1, reliability=reliability)
summary(mod1b)
#**************************************************************
#*** Model 2: Linear regression with errors in predictors
# specify lavaan model
lavmodel2 <- "
ASMMAT ~ ASBG07A + ASBG07B + ASBM03A
ASBG07A ~~ .2*ASBG07A
"
mod2 <- BIFIEsurvey::BIFIE.pathmodel( bifieobj, lavmodel2 )
summary(mod2)
}