IRT.jackknife.Rd
This function performs a Jackknife procedure for estimating
standard errors for an item response model. The replication
design must be defined by IRT.repDesign
.
Model fit is also assessed via Jackknife.
Statistical inference for derived parameters is performed
by IRT.derivedParameters
with a fitted object of
class IRT.jackknife
and a list with defining formulas.
Objects for which S3 method IRT.jackknife
is defined.
Replication design generated by IRT.repDesign
.
Object of class IRT.jackknife
.
List with defined derived parameters (see Example 2, Model 2).
Optional logical indicating whether a bias correction should be employed.
Further arguments to be passed.
List with following entries
Parameter table with Jackknife estimates
Matrix with replicated statistics
Variance covariance matrix of parameters
if (FALSE) {
library(BIFIEsurvey)
#############################################################################
# EXAMPLE 1: Multiple group DINA model with TIMSS data | Cluster sample
#############################################################################
data(data.timss11.G4.AUT.part, package="CDM")
dat <- data.timss11.G4.AUT.part$data
q.matrix <- data.timss11.G4.AUT.part$q.matrix2
# extract items
items <- paste(q.matrix$item)
# generate replicate design
rdes <- CDM::IRT.repDesign( data=dat, wgt="TOTWGT", jktype="JK_TIMSS",
jkzone="JKCZONE", jkrep="JKCREP" )
#--- Model 1: fit multiple group GDINA model
mod1 <- CDM::gdina( dat[,items], q.matrix=q.matrix[,-1],
weights=dat$TOTWGT, group=dat$female +1 )
# jackknife Model 1
jmod1 <- CDM::IRT.jackknife( object=mod1, repDesign=rdes )
summary(jmod1)
coef(jmod1)
vcov(jmod1)
#############################################################################
# EXAMPLE 2: DINA model | Simple random sampling
#############################################################################
data(sim.dina, package="CDM")
data(sim.qmatrix, package="CDM")
dat <- sim.dina
q.matrix <- sim.qmatrix
# generate replicate design with 50 jackknife zones (50 random groups)
rdes <- CDM::IRT.repDesign( data=dat, jktype="JK_RANDOM", ngr=50 )
#--- Model 1: DINA model
mod1 <- CDM::gdina( dat, q.matrix=q.matrix, rule="DINA")
summary(mod1)
# jackknife DINA model
jmod1 <- CDM::IRT.jackknife( object=mod1, repDesign=rdes )
summary(jmod1)
#--- Model 2: DINO model
mod2 <- CDM::gdina( dat, q.matrix=q.matrix, rule="DINO")
summary(mod2)
# jackknife DINA model
jmod2 <- CDM::IRT.jackknife( object=mod2, repDesign=rdes )
summary(jmod2)
IRT.compareModels( mod1, mod2 )
# statistical inference for derived parameters
derived.parameters <- list( "skill1"=~ 0 + I(prob_skillV1_lev1_group1),
"skilldiff12"=~ 0 + I( prob_skillV2_lev1_group1 - prob_skillV1_lev1_group1 ),
"skilldiff13"=~ 0 + I( prob_skillV3_lev1_group1 - prob_skillV1_lev1_group1 )
)
jmod2a <- CDM::IRT.derivedParameters( jmod2, derived.parameters=derived.parameters )
summary(jmod2a)
coef(jmod2a)
}