IRT.jackknife.RdThis function performs a Jackknife procedure for estimating
standard errors for an item response model. The replication
design must be defined by IRT.repDesign.
Model fit is also assessed via Jackknife.
Statistical inference for derived parameters is performed
by IRT.derivedParameters with a fitted object of
class IRT.jackknife and a list with defining formulas.
Objects for which S3 method IRT.jackknife is defined.
Replication design generated by IRT.repDesign.
Object of class IRT.jackknife.
List with defined derived parameters (see Example 2, Model 2).
Optional logical indicating whether a bias correction should be employed.
Further arguments to be passed.
List with following entries
Parameter table with Jackknife estimates
Matrix with replicated statistics
Variance covariance matrix of parameters
if (FALSE) {
library(BIFIEsurvey)
#############################################################################
# EXAMPLE 1: Multiple group DINA model with TIMSS data | Cluster sample
#############################################################################
data(data.timss11.G4.AUT.part, package="CDM")
dat <- data.timss11.G4.AUT.part$data
q.matrix <- data.timss11.G4.AUT.part$q.matrix2
# extract items
items <- paste(q.matrix$item)
# generate replicate design
rdes <- CDM::IRT.repDesign( data=dat, wgt="TOTWGT", jktype="JK_TIMSS",
jkzone="JKCZONE", jkrep="JKCREP" )
#--- Model 1: fit multiple group GDINA model
mod1 <- CDM::gdina( dat[,items], q.matrix=q.matrix[,-1],
weights=dat$TOTWGT, group=dat$female +1 )
# jackknife Model 1
jmod1 <- CDM::IRT.jackknife( object=mod1, repDesign=rdes )
summary(jmod1)
coef(jmod1)
vcov(jmod1)
#############################################################################
# EXAMPLE 2: DINA model | Simple random sampling
#############################################################################
data(sim.dina, package="CDM")
data(sim.qmatrix, package="CDM")
dat <- sim.dina
q.matrix <- sim.qmatrix
# generate replicate design with 50 jackknife zones (50 random groups)
rdes <- CDM::IRT.repDesign( data=dat, jktype="JK_RANDOM", ngr=50 )
#--- Model 1: DINA model
mod1 <- CDM::gdina( dat, q.matrix=q.matrix, rule="DINA")
summary(mod1)
# jackknife DINA model
jmod1 <- CDM::IRT.jackknife( object=mod1, repDesign=rdes )
summary(jmod1)
#--- Model 2: DINO model
mod2 <- CDM::gdina( dat, q.matrix=q.matrix, rule="DINO")
summary(mod2)
# jackknife DINA model
jmod2 <- CDM::IRT.jackknife( object=mod2, repDesign=rdes )
summary(jmod2)
IRT.compareModels( mod1, mod2 )
# statistical inference for derived parameters
derived.parameters <- list( "skill1"=~ 0 + I(prob_skillV1_lev1_group1),
"skilldiff12"=~ 0 + I( prob_skillV2_lev1_group1 - prob_skillV1_lev1_group1 ),
"skilldiff13"=~ 0 + I( prob_skillV3_lev1_group1 - prob_skillV1_lev1_group1 )
)
jmod2a <- CDM::IRT.derivedParameters( jmod2, derived.parameters=derived.parameters )
summary(jmod2a)
coef(jmod2a)
}