All functions

anova(<din>) anova(<gdina>) anova(<gdm>) anova(<mcdina>) anova(<reglca>) anova(<slca>)

Likelihood Ratio Test for Model Comparisons

cdi.kli() summary(<cdi.kli>)

Cognitive Diagnostic Indices based on Kullback-Leibler Information

CDM-package CDM

Cognitive Diagnosis Modeling

CDM_require_namespace() cdm_attach_internal_function() cdm_print_summary_data_frame() cdm_print_summary_call() cdm_print_summary_computation_time() cdm_matrixstring() CDM_rmvnorm() cdm_fit_normal() cdm_fa1() CDM_rbind_fill() cdm_matrix2() cdm_matrix1() cdm_penalty_threshold_scad() cdm_penalty_threshold_lasso() cdm_penalty_threshold_ridge() cdm_penalty_threshold_elnet() cdm_penalty_threshold_scadL2() cdm_penalty_threshold_tlp() cdm_penalty_threshold_mcp() cdm_parameter_regularization() cdm_penalty_values() cdm_parameter_regularization() cdm_pem_inits() cdm_pem_inits_assign_parmlist() cdm_pem_acceleration() cdm_pem_acceleration_assign_output_parameters() abs_approx() abs_approx_D1() cdm_calc_information_criteria() cdm_print_summary_information_criteria() cat_paste()

Utility Functions in CDM

cdm.est.class.accuracy()

Classification Reliability in a CDM

coef(<din>) coef(<gdina>) coef(<mcdina>) coef(<gdm>) coef(<slca>)

Extract Estimated Item Parameters and Skill Class Distribution Parameters

sim.dina sim.dino sim.qmatrix

Artificial Data: DINA and DINO

data.cdm01 data.cdm02 data.cdm03 data.cdm04 data.cdm05 data.cdm06 data.cdm07 data.cdm08 data.cdm09 data.cdm10

Several Datasets for the CDM Package

data.dcm

Dataset from Book 'Diagnostic Measurement' of Rupp, Templin and Henson (2010)

data.dtmr

DTMR Fraction Data (Bradshaw et al., 2014)

data.ecpe

Dataset ECPE

data.fraction1 data.fraction2 data.fraction3 data.fraction4 data.fraction5

Fraction Subtraction Dataset with Different Subsets of Data and Different Q-Matrices

data.hr

Dataset data.hr (Ravand et al., 2013)

data.jang

Dataset Jang (2009)

data.melab

MELAB Data (Li, 2011)

data.mg

Large-Scale Dataset with Multiple Groups

data.pgdina

Dataset for Polytomous GDINA Model

data.pisa00R.ct data.pisa00R.cc

PISA 2000 Reading Study (Chen & de la Torre, 2014)

data.sda6

Dataset SDA6 (Jurich & Bradshaw, 2014)

data.Students

Dataset Student Questionnaire

data.timss03.G8.su

TIMSS 2003 Mathematics 8th Grade (Su et al., 2013)

data.timss07.G4.lee data.timss07.G4.py data.timss07.G4.Qdomains

TIMSS 2007 Mathematics 4th Grade (Lee et al., 2011)

data.timss11.G4.AUT data.timss11.G4.AUT.part data.timss11.G4.sa

TIMSS 2011 Mathematics 4th Grade Austrian Students

deltaMethod()

Variance Matrix of a Nonlinear Estimator Using the Delta Method

din.deterministic()

Deterministic Classification and Joint Maximum Likelihood Estimation of the Mixed DINA/DINO Model

din.equivalent.class()

Calculation of Equivalent Skill Classes in the DINA/DINO Model

din() print(<din>)

Parameter Estimation for Mixed DINA/DINO Model

din.validate.qmatrix()

Q-Matrix Validation (Q-Matrix Modification) for Mixed DINA/DINO Model

din_identifiability() summary(<din_identifiability>)

Identifiability Conditions of the DINA Model

discrim.index() summary(<discrim.index>)

Discrimination Indices at Item-Attribute, Item and Test Level

entropy.lca() summary(<entropy.lca>)

Test-specific and Item-specific Entropy for Latent Class Models

equivalent.dina()

Determination of a Statistically Equivalent DINA Model

eval_likelihood() prep_data_long_format()

Evaluation of Likelihood

fraction.subtraction.data

Fraction Subtraction Data

fraction.subtraction.qmatrix

Fraction Subtraction Q-Matrix

gdd()

Generalized Distance Discriminating Method

gdina.dif() summary(<gdina.dif>)

Differential Item Functioning in the GDINA Model

gdina() summary(<gdina>) plot(<gdina>) print(<gdina>)

Estimating the Generalized DINA (GDINA) Model

gdina.wald() summary(<gdina.wald>)

Wald Statistic for Item Fit of the DINA and ACDM Rule for GDINA Model

gdm() summary(<gdm>) print(<gdm>) plot(<gdm>)

General Diagnostic Model

ideal.response.pattern()

Ideal Response Pattern

IRT.anova()

Helper Function for Conducting Likelihood Ratio Tests

IRT.classify()

Individual Classification for Fitted Models

IRT.compareModels() summary(<IRT.compareModels>)

Comparisons of Several Models

IRT.data()

S3 Method for Extracting Used Item Response Dataset

IRT.expectedCounts()

S3 Method for Extracting Expected Counts

IRT.factor.scores()

S3 Methods for Extracting Factor Scores (Person Classifications)

IRT.frequencies() IRT_frequencies_default() IRT_frequencies_wrapper()

S3 Method for Computing Observed and Expected Frequencies of Univariate and Bivariate Marginals

IRT.IC()

Information Criteria

IRT.irfprob()

S3 Methods for Extracting Item Response Functions

IRT.irfprobPlot()

Plot Item Response Functions

IRT.itemfit()

S3 Methods for Computing Item Fit

IRT.jackknife() IRT.derivedParameters() coef(<IRT.jackknife>) vcov(<IRT.jackknife>)

Jackknifing an Item Response Model

IRT.likelihood() IRT.posterior()

S3 Methods for Extracting of the Individual Likelihood and the Individual Posterior

IRT.marginal_posterior()

S3 Method for Computation of Marginal Posterior Distribution

IRT.modelfit() summary(<IRT.modelfit.din>) summary(<IRT.modelfit.gdina>)

S3 Methods for Assessing Model Fit

IRT.parameterTable()

S3 Method for Extracting a Parameter Table

IRT.repDesign()

Generation of a Replicate Design for IRT.jackknife

IRT.RMSD() summary(<IRT.RMSD>) IRT_RMSD_calc_rmsd()

Root Mean Square Deviation (RMSD) Item Fit Statistic

itemfit.rmsea()

RMSEA Item Fit

itemfit.sx2() summary(<itemfit.sx2>) plot(<itemfit.sx2>)

S-X2 Item Fit Statistic for Dichotomous Data

item_by_group()

Create Dataset with Group-Specific Items

logLik(<din>) logLik(<gdina>) logLik(<mcdina>) logLik(<gdm>) logLik(<slca>) logLik(<reglca>)

Extract Log-Likelihood

mcdina() summary(<mcdina>) print(<mcdina>)

Multiple Choice DINA Model

modelfit.cor() modelfit.cor2() modelfit.cor.din() summary(<modelfit.cor.din>)

Assessing Model Fit and Local Dependence by Comparing Observed and Expected Item Pair Correlations

numerical_Hessian() numerical_Hessian_partial() numerical_gradient()

Numerical Computation of the Hessian Matrix

osink() csink()

Opens and Closes a sink Connection

personfit.appropriateness() summary(<personfit.appropriateness>) plot(<personfit.appropriateness>)

Appropriateness Statistic for Person Fit Assessment

plot(<din>)

Plot Method for Objects of Class din

plot_item_mastery()

S3 Methods for Plotting Item Probabilities

IRT.predict() predict(<din>) predict(<gdina>) predict(<mcdina>) predict(<gdm>) predict(<slca>)

Expected Values and Predicted Probabilities from Item Response Response Models

print(<summary.din>)

Print Method for Objects of Class summary.din

reglca() summary(<reglca>)

Regularized Latent Class Analysis

sequential.items()

Constructing a Dataset with Sequential Pseudo Items for Ordered Item Responses

sim.din()

Data Simulation Tool for DINA, DINO and mixed DINA and DINO Data

sim.gdina() sim.gdina.prepare()

Simulation of the GDINA model

sim_model()

Simulate an Item Response Model

skill.cor() skill.polychor()

Tetrachoric or Polychoric Correlations between Attributes

skillspace.approximation()

Skill Space Approximation

skillspace.hierarchy() skillspace.full()

Creation of a Hierarchical Skill Space

slca() summary(<slca>) print(<slca>) plot(<slca>)

Structured Latent Class Analysis (SLCA)

summary(<din>)

Summary Method for Objects of Class din

summary_sink()

Prints summary and sink Output in a File

vcov(<din>) confint(<din>) IRT.se()

Asymptotic Covariance Matrix, Standard Errors and Confidence Intervals

WaldTest()

Wald Test for a Linear Hypothesis