data.jang.Rd
Simulated dataset according to the Jang (2005) L2 reading comprehension study.
data(data.jang)
The format is:
List of 2
$ data : num [1:1500, 1:37] 1 1 1 1 1 1 1 1 1 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:37] "I1" "I2" "I3" "I4" ...
$ q.matrix:'data.frame':
..$ CDV: int [1:37] 1 0 0 1 0 0 0 0 0 0 ...
..$ CIV: int [1:37] 0 0 1 0 0 0 1 0 1 1 ...
..$ SSL: int [1:37] 1 1 1 1 0 0 0 0 0 0 ...
..$ TEI: int [1:37] 0 0 0 0 0 0 0 1 0 0 ...
..$ TIM: int [1:37] 0 0 0 1 1 1 0 0 0 0 ...
..$ INF: int [1:37] 0 1 0 0 0 0 1 0 0 0 ...
..$ NEG: int [1:37] 0 0 0 0 1 0 1 0 0 0 ...
..$ SUM: int [1:37] 0 0 0 0 1 0 0 0 0 0 ...
..$ MCF: int [1:37] 0 0 0 0 0 0 0 0 0 0 ...
Simulated dataset.
Jang, E. E. (2009). Cognitive diagnostic assessment of L2 reading comprehension ability: Validity arguments for Fusion Model application to LanguEdge assessment. Language Testing, 26, 31-73.
if (FALSE) {
data(data.jang, package="CDM")
data <- data.jang$data
q.matrix <- data.jang$q.matrix
#*** Model 1: Reduced RUM model
mod1 <- CDM::gdina( data, q.matrix, rule="RRUM", conv.crit=.001, increment.factor=1.025 )
summary(mod1)
#*** Model 2: Additive model (identity link)
mod2 <- CDM::gdina( data, q.matrix, rule="ACDM", conv.crit=.001, linkfct="identity" )
summary(mod2)
#*** Model 3: DINA model
mod3 <- CDM::gdina( data, q.matrix, rule="DINA", conv.crit=.001 )
summary(mod3)
anova(mod1,mod2)
## Model loglike Deviance Npars AIC BIC Chisq df p
## 1 Model 1 -30315.03 60630.06 153 60936.06 61748.98 88.29627 0 0
## 2 Model 2 -30270.88 60541.76 153 60847.76 61660.68 NA NA NA
anova(mod1,mod3)
## Model loglike Deviance Npars AIC BIC Chisq df p
## 2 Model 2 -30373.99 60747.97 129 61005.97 61691.38 117.9128 24 0
## 1 Model 1 -30315.03 60630.06 153 60936.06 61748.98 NA NA NA
# RRUM
summary( CDM::modelfit.cor.din( mod1, jkunits=0) )
## type value p
## 1 max(X2) 11.79073 0.39645
## 2 abs(fcor) 0.09541 0.07422
## est
## MADcor 0.01834
## SRMSR 0.02300
## MX2 0.86718
## 100*MADRESIDCOV 0.38690
## MADQ3 0.02413
# additive model (identity)
summary( CDM::modelfit.cor.din( mod2, jkunits=0) )
## type value p
## 1 max(X2) 9.78958 1.00000
## 2 abs(fcor) 0.08770 0.22993
## est
## MADcor 0.01721
## SRMSR 0.02158
## MX2 0.69163
## 100*MADRESIDCOV 0.36343
## MADQ3 0.02423
# DINA model
summary( CDM::modelfit.cor.din( mod3, jkunits=0) )
## type value p
## 1 max(X2) 13.48449 0.16020
## 2 abs(fcor) 0.10651 0.01256
## est
## MADcor 0.01999
## SRMSR 0.02495
## MX2 0.92820
## 100*MADRESIDCOV 0.42226
## MADQ3 0.02258
}