IRT.frequencies.Rd
This S3 method computes observed and expected frequencies for univariate and bivariate distributions.
IRT.frequencies(object, ...)
IRT_frequencies_default(data, post, probs, weights=NULL)
IRT_frequencies_wrapper(object, ...)
# S3 method for din
IRT.frequencies(object, ...)
# S3 method for gdina
IRT.frequencies(object, ...)
# S3 method for mcdina
IRT.frequencies(object, ...)
# S3 method for gdm
IRT.frequencies(object, ...)
# S3 method for slca
IRT.frequencies(object, ...)
More arguments to be passed.
Item response data as extracted by IRT.data
Individual posterior distribution as extracted by IRT.posterior
Individual posterior distribution as extracted by IRT.irfprob
Optional vector of weights as included as the attribute weights
in IRT.data
List with following entries
Univariate observed distribution
Univariate expected distribution
Univariate observed means
Univariate expected means
Univariate observed standard deviations
Univariate expected standard deviations
Bivariate observed frequencies
Bivariate expected frequencies
Bivariate sample size
Observed covariances
Expected covariances
Observed correlations
Expected correlations
Chi square statistic of local independence
if (FALSE) {
#############################################################################
# EXAMPLE 1: Usage IRT.frequencies
#############################################################################
data(sim.dina, package="CDM")
data(sim.qmatrix, package="CDM")
# estimate GDINA model
mod1 <- CDM::gdina( data=sim.dina, q.matrix=sim.qmatrix)
summary(mod1)
# direct usage of IRT.frequencies
fres1 <- CDM::IRT.frequencies(mod1)
# use of the default function with input data
data <- CDM::IRT.data(object)
post <- CDM::IRT.posterior(object)
probs <- CDM::IRT.irfprob(object)
fres2 <- CDM::IRT_frequencies_default(data=data, post=post, probs=probs)
}