This function implements a structured latent class model for polytomous item responses (Formann, 1985, 1992). Lasso estimation for the item parameters is included (Chen, Liu, Xu & Ying, 2015; Chen, Li, Liu & Ying, 2017; Sun, Chen, Liu, Ying & Xin, 2016).

slca(data, group=NULL, weights=rep(1, nrow(data)), Xdes,
  Xlambda.init=NULL, Xlambda.fixed=NULL, Xlambda.constr.V=NULL,
  Xlambda.constr.c=NULL,  delta.designmatrix=NULL,
  delta.init=NULL, delta.fixed=NULL, delta.linkfct="log",
  Xlambda_positive=NULL, regular_type="lasso", regular_lam=0, regular_w=NULL,
  regular_n=nrow(data), maxiter=1000, conv=1e-5, globconv=1e-5, msteps=10,
  convM=5e-04, decrease.increments=FALSE, oldfac=0, dampening_factor=1.01,
  seed=NULL, progress=TRUE, PEM=TRUE, PEM_itermax=maxiter, ...)

# S3 method for slca
summary(object, file=NULL, ...)

# S3 method for slca
print(x, ...)

# S3 method for slca
plot(x, group=1, ... )

Arguments

data

Matrix of polytomous item responses

group

Optional vector of group identifiers. For plot.slca it is a single integer group identified.

weights

Optional vector of sample weights

Xdes

Design matrix for \(x_{ijh}\) with \( q_{ihjv}\) entries. Therefore, it must be an array with four dimensions referring to items (\(i\)), categories (\(h\)), latent classes (\(j\)) and \(\lambda\) parameters (\(v\)).

Xlambda.init

Initial \(\lambda_x\) parameters

Xlambda.fixed

Fixed \(\lambda_x\) parameters. These must be provided by a matrix with two columns: 1st column -- Parameter index, 2nd column: Fixed value.

Xlambda.constr.V

A design matrix for linear restrictions of the form \(V_x \lambda_x=c_x\) for the \(\lambda_x\) parameter.

Xlambda.constr.c

A vector for the linear restriction \(V_x \lambda_x=c_x\) of the \(\lambda_x\) parameter.

delta.designmatrix

Design matrix for delta parameters \(\delta\) parameterizing the latent class distribution by log-linear smoothing (Xu & von Davier, 2008)

delta.init

Initial \(\delta\) parameters

delta.fixed

Fixed \(\delta\) parameters. This must be a matrix with three columns: 1st column: Parameter index, 2nd column: Group index, 3rd column: Fixed value

delta.linkfct

Link function for skill space reduction. This can be the log-linear link (log) or the logistic link function (logit).

Xlambda_positive

Optional vector of logical indicating which elements of \(\bold{\lambda}_x\) should be constrained to be positive.

regular_type

Regularization method which can be lasso, scad or mcp. See gdina for more information and references.

regular_lam

Numeric. Regularization parameter

regular_w

Vector for weighting the regularization penalty

regular_n

Vector of regularization factor. This will be typically the sample size.

maxiter

Maximum number of iterations

conv

Convergence criterion for item parameters and distribution parameters

globconv

Global deviance convergence criterion

msteps

Maximum number of M steps in estimating \(b\) and \(a\) item parameters. The default is to use 4 M steps.

convM

Convergence criterion in M step

decrease.increments

Should in the M step the increments of \(a\) and \(b\) parameters decrease during iterations? The default is FALSE. If there is an increase in deviance during estimation, setting decrease.increments to TRUE is recommended.

oldfac

Factor \(f\) between 0 and 1 to control convergence behavior. If \(x_t\) denotes the estimated parameter in iteration \(t\), then the regularized estimate \(x_t^{\ast}\) is obtained by \(x_t^{\ast}=f x_{t-1} + (1-f) x_t\). Therefore, values of oldfac near to one only allow for small changes in estimated parameters from in succeeding iterations.

dampening_factor

Factor larger than one defining the specified decrease in decrements in iterations.

seed

Simulation seed for initial parameters. The default of NULL corresponds to a random seed.

progress

An optional logical indicating whether the function should print the progress of iteration in the estimation process.

PEM

Logical indicating whether the P-EM acceleration should be applied (Berlinet & Roland, 2012).

PEM_itermax

Number of iterations in which the P-EM method should be applied.

object

A required object of class slca

file

Optional file name for a file in which summary should be sinked.

x

A required object of class slca

...

Optional parameters to be passed to or from other methods will be ignored.

Details

The structured latent class model allows for general constraints of items \(i\) in categories \(h\) and classes \(j\). The item response model is $$P( X_{i}=h | j )=\frac{ \exp( x_{ihj} ) }{ \sum_l \exp( x_{ilj} ) }$$ with linear constraints on the class specific probabilities $$ x_{ihj}=\sum_v q_{ihjv} \lambda_{xv} $$

Linear restrictions on the \(\lambda_x\) parameter can be specified by a matrix equation \(V_x \lambda_x=c_x\) (see Xlambda.constr.V and Xlambda.constr.c; Neuhaus, 1996).

The latent class distribution can be smoothed by a log-linear link function (Xu & von Davier, 2008) or a logistic link function (Formann, 1992). For class \(j\) in group \(g\) employing a link function \(h\), it holds that $$ h [ P( j| g) ] \propto \sum_w r_{jw} \delta_{gw} $$ where group-specific distributions are allowed. The values \(r_{jw}\) are specified in the design matrix delta.designmatrix.

This model contains classical uni- and multidimensional latent trait models, latent class analysis, located latent class analysis, cognitive diagnostic models, the general diagnostic model and mixture item response models as special cases (see Formann & Kohlmann, 1998; Formann, 2007).

The function also allows for regularization of \(\lambda_{xv}\) parameters using the lasso approach (Sun et al., 2016). More formally, the penalty function can be written as $$pen( \bold{\lambda}_x )=p_\lambda \sum_v n_v w_v | \lambda_{xv} | $$ where \(p_\lambda\) can be specified with regular_lam, \(w_v\) can be specified with regular_w, and \(n_v\) can be specified with regular_n.

Value

An object of class slca. The list contains the following entries:

item

Data frame with conditional item probabilities

deviance

Deviance

ic

Information criteria, number of estimated parameters

Xlambda

Estimated \(\lambda_x\) parameters

se.Xlambda

Standard error of \(\lambda_x\) parameters

pi.k

Trait distribution

pjk

Item response probabilities evaluated for all classes

n.ik

An array of expected counts \(n_{cikg}\) of ability class \(c\) at item \(i\) at category \(k\) in group \(g\)

G

Number of groups

I

Number of items

N

Number of persons

delta

Parameter estimates for skillspace representation

covdelta

Covariance matrix of parameter estimates for skillspace representation

MLE.class

Classified skills for each student (MLE)

MAP.class

Classified skills for each student (MAP)

data

Original data frame

group.stat

Group statistics (sample sizes, group labels)

p.xi.aj

Individual likelihood

posterior

Individual posterior distribution

K.item

Maximal category per item

time

Info about computation time

skillspace

Used skillspace parametrization

iter

Number of iterations

seed.used

Used simulation seed

Xlambda.init

Used initial lambda parameters

delta.init

Used initial delta parameters

converged

Logical indicating whether convergence was achieved.

References

Berlinet, A. F., & Roland, C. (2012). Acceleration of the EM algorithm: P-EM versus epsilon algorithm. Computational Statistics & Data Analysis, 56(12), 4122-4137.

Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110, 850-866.

Chen, Y., Li, X., Liu, J., & Ying, Z. (2017). Regularized latent class analysis with application in cognitive diagnosis. Psychometrika, 82, 660-692.

Formann, A. K. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematical and Statistical Psychology, 38, 87-111.

Formann, A. K. (1992). Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, 87, 476-486.

Formann, A. K. (2007). (Almost) Equivalence between conditional and mixture maximum likelihood estimates for some models of the Rasch type. In M. von Davier & C. H. Carstensen (Eds.), Multivariate and mixture distribution Rasch models (pp. 177-189). New York: Springer.

Formann, A. K., & Kohlmann, T. (1998). Structural latent class models. Sociological Methods & Research, 26, 530-565.

Neuhaus, W. (1996). Optimal estimation under linear constraints. Astin Bulletin, 26, 233-245.

Sun, J., Chen, Y., Liu, J., Ying, Z., & Xin, T. (2016). Latent variable selection for multidimensional item response theory models via \(L_1\) regularization. Psychometrika, 81(4), 921-939.

Xu, X., & von Davier, M. (2008). Fitting the structured general diagnostic model to NAEP data. ETS Research Report ETS RR-08-27. Princeton, ETS.

Note

If some items have differing number of categories, appropriate class probabilities in non-existing categories per items can be practically set to zero by loading an item for all skill classes on a fixed \(\lambda_x\) parameter of a small number, e.g. -999.

The implementation of the model builds on pieces work of Anton Formann. See http://www.antonformann.at/ for more information.

See also

For latent trait models with continuous latent variables see the mirt or TAM packages. For a discrete trait distribution see the MultiLCIRT package.

For latent class models see the poLCA, covLCA or randomLCA package.

For mixture Rasch or mixture IRT models see the psychomix or mRm package.

Examples