gdm.Rd
This function estimates the general diagnostic model (von Davier, 2008; Xu & von Davier, 2008) which handles multidimensional item response models with ordered discrete or continuous latent variables for polytomous item responses.
gdm( data, theta.k, irtmodel="2PL", group=NULL, weights=rep(1, nrow(data)),
Qmatrix=NULL, thetaDes=NULL, skillspace="loglinear",
b.constraint=NULL, a.constraint=NULL,
mean.constraint=NULL, Sigma.constraint=NULL, delta.designmatrix=NULL,
standardized.latent=FALSE, centered.latent=FALSE,
centerintercepts=FALSE, centerslopes=FALSE,
maxiter=1000, conv=1e-5, globconv=1e-5, msteps=4, convM=.0005,
decrease.increments=FALSE, use.freqpatt=FALSE, progress=TRUE,
PEM=FALSE, PEM_itermax=maxiter, ...)
# S3 method for gdm
summary(object, file=NULL, ...)
# S3 method for gdm
print(x, ...)
# S3 method for gdm
plot(x, perstype="EAP", group=1, barwidth=.1, histcol=1,
cexcor=3, pchpers=16, cexpers=.7, ... )
An \(N \times I\) matrix of polytomous item responses with categories \(k=0,1,...,K\)
In the one-dimensional case it must be a vector.
For multidimensional models it has to be a list
of skill vectors if the theta grid differs between
dimensions. If not, a vector input can be supplied.
If an estimated skillspace (skillspace="est"
should be estimated,
a vector or a matrix theta.k
will be used as initial values of the estimated
\(\bold{\theta}\) grid.
The default 2PL
corresponds to the model
where item slopes on dimensions are equal for all
item categories. If item-category slopes should
be estimated, use 2PLcat
. If no item slopes
should be estimated then 1PL
can be selected.
Note that fixed item slopes can be specified in
the Q-matrix (argument Qmatrix
).
An optional vector of group identifiers for
multiple group estimation.
For plot.gdm
it is an integer indicating which
group should be used for plotting.
An optional vector of sample weights
An optional array of dimension \(I \times D \times K\) which indicates pre-specified item loadings on dimensions. The default for category \(k\) is the score \(k\), i.e. the scoring in the (generalized) partial credit model.
A design matrix for specifying nonlinear item response functions (see Example 1, Models 4 and 5)
The parametric assumption of the skillspace.
If skillspace="normal"
then a univariate or
multivariate normal distribution is assumed.
The default "loglinear"
corresponds to log-linear
smoothing of the skillspace distribution (Xu & von Davier, 2008).
If skillspace="full"
, then all probabilities of the skill space
are nonparametrically estimated. If skillspace="est"
, then the
\(\bold{\theta}\) distribution vectors will be estimated
(see Details and Examples 4 and 5; Bartolucci, 2007).
In this optional matrix with \(C_b\) rows and three columns, \(C_b\) item intercepts \(b_{ik}\) can be fixed. 1st column: item index, 2nd column: category index, 3rd column: fixed item thresholds
In this optional matrix with \(C_a\) rows and four columns,
\(C_a\) item intercepts \(a_{idk}\) can be fixed.
1st column: item index, 2nd column: dimension index,
3rd column: category index, 4th column: fixed item slopes
A \(C \times 3\) matrix for
constraining \(C\) means in the
normal distribution assumption (skillspace="normal"
).
1st column: Dimension, 2nd column: Group, 3rd column: Value
A \(C \times 4\) matrix for
constraining \(C\) covariances in the
normal distribution assumption (skillspace="normal"
).
1st column: Dimension 1, 2nd column: Dimension 2,
3rd column: Group, 4th column: Value
The design matrix of \(\delta\) parameters for the reduced skillspace estimation (see Xu & von Davier, 2008)
A logical indicating whether in a uni- or multidimensional
model all latent variables of the first group should be normally distributed
and standardized. The default is FALSE
.
A logical indicating whether in a uni- or multidimensional
model all latent variables of the first group should be normally
distributed and do have zero means? The default is FALSE
.
A logical indicating whether intercepts should be centered to have a mean of 0 for all dimensions. This argument does not (yet) work properly for varying numbers of item categories.
A logical indicating whether item slopes should be centered to have
a mean of 1 for all dimensions. This argument only works for
irtmodel="2PL"
. The default is FALSE
.
Maximum number of iterations
Convergence criterion for item parameters and distribution parameters
Global deviance convergence criterion
Maximum number of M steps in estimating \(b\) and \(a\) item parameters. The default is to use 4 M steps.
Convergence criterion in M step
Should in the M step the increments
of \(a\) and \(b\) parameters decrease during iterations?
The default is FALSE
. If there is an increase in deviance
during estimation, setting decrease.increments
to TRUE
is recommended.
A logical indicating whether frequencies of unique item response patterns
should be used. In case of large data set use.freqpatt=TRUE
can speed calculations (depending on the problem).
Note that in this case, not all person parameters are calculated
as usual in the output.
An optional logical indicating whether the function should print the progress of iteration in the estimation process.
Logical indicating whether the P-EM acceleration should be applied (Berlinet & Roland, 2012).
Number of iterations in which the P-EM method should be applied.
A required object of class gdm
Optional file name for a file in which summary
should be sinked.
A required object of class gdm
Person parameter estimate type. Can be either
"EAP"
, "MAP"
or "MLE"
.
Bar width in plot.gdm
Color of histogram bars in plot.gdm
Font size for print of correlation in plot.gdm
Point type for scatter plot of person
parameters in plot.gdm
Point size for scatter plot of person
parameters in plot.gdm
Optional parameters to be passed to or from other methods will be ignored.
Case irtmodel="1PL"
:
Equal item slopes of 1 are assumed in this model. Therefore,
it corresponds to a generalized multidimensional Rasch model.
$$logit P( X_{nj}=k | \theta_n )=b_{j0} +
\sum_d q_{jdk} \theta_{nd} $$
The Q-matrix entries \(q_{jdk}\) are pre-specified by the user.
Case irtmodel="2PL"
:
For each item and each dimension, different item slopes \(a_{jd}\)
are estimated:
$$logit P( X_{nj}=k | \theta_n )=b_{j0} +
\sum_d a_{jd} q_{jdk} \theta_{nd} $$
Case irtmodel="2PLcat"
:
For each item, each dimension and each category,
different item slopes \(a_{jdk}\)
are estimated:
$$logit P( X_{nj}=k | \theta_n )=b_{j0} +
\sum_d a_{jdk} q_{jdk} \theta_{nd} $$
Note that this model can be generalized to include terms of any transformation \(t_h\) of the \(\theta_n\) vector (e.g. quadratic terms, step functions or interaction) such that the model can be formulated as $$logit P( X_{nj}=k | \theta_n )=b_{j0} + \sum_h a_{jhk} q_{jhk} t_h( \theta_{n} ) $$ In general, the number of functions \(t_1, ..., t_H\) will be larger than the \(\theta\) dimension of \(D\).
The estimation follows an EM algorithm as described in von Davier and Yamamoto (2004) and von Davier (2008).
In case of skillspace="est"
, the \(\bold{\theta}\) vectors
(the grid of the theta distribution) are estimated (Bartolucci, 2007;
Bacci, Bartolucci & Gnaldi, 2012). This model is called a multidimensional
latent class item response model.
An object of class gdm
. The list contains the
following entries:
Data frame with item parameters
Data frame with person parameters:
EAP
denotes the mean of the individual posterior distribution,
SE.EAP
the corresponding standard error,
MLE
the maximum likelihood estimate at theta.k
and MAP
the mode of the posterior distribution
Reliability of the EAP
Deviance
Information criteria, number of estimated parameters
Item intercepts \(b_{jk}\)
Standard error of item intercepts \(b_{jk}\)
Item slopes \(a_{jd}\) resp. \(a_{jdk}\)
Standard error of item slopes \(a_{jd}\) resp. \(a_{jdk}\)
The RMSEA item fit index (see itemfit.rmsea
).
This entry comes as a list with total and group-wise item fit
statistics.
Mean of RMSEA item fit indexes.
Used Q-matrix
Trait distribution
Means of trait distribution
Standard deviations of trait distribution
Skewnesses of trait distribution
List of correlation matrices of trait distribution corresponding to each group
Item response probabilities evaluated at grid theta.k
An array of expected counts \(n_{cikg}\) of ability class \(c\) at item \(i\) at category \(k\) in group \(g\)
Number of groups
Number of dimension of \(\bold{\theta}\)
Number of items
Number of persons
Parameter estimates for skillspace representation
Covariance matrix of parameter estimates for skillspace representation
Original data frame
Group statistics (sample sizes, group labels)
Individual likelihood
Individual posterior distribution
Number of skill levels per dimension
Maximal category per item
Used theta design or estimated theta trait distribution
in case of skillspace="est"
Used theta design for item responses
Estimated standard errors of theta.k
if it is
estimated
Info about computation time
Used skillspace parametrization
Number of iterations
Logical indicating whether convergence was achieved.
Object of class gdm
Object of class gdm
Person paramter estimate type. Can be either
"EAP"
, "MAP"
or "MLE"
.
Group which should be used for plot.gdm
Bar width in plot.gdm
Color of histogram bars in plot.gdm
Font size for print of correlation in plot.gdm
Point type for scatter plot of person
parameters in plot.gdm
Point size for scatter plot of person
parameters in plot.gdm
Optional parameters to be passed to or from other methods will be ignored.
Bacci, S., Bartolucci, F., & Gnaldi, M. (2012). A class of multidimensional latent class IRT models for ordinal polytomous item responses. arXiv preprint, arXiv:1201.4667.
Bartolucci, F. (2007). A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika, 72, 141-157.
Berlinet, A. F., & Roland, C. (2012). Acceleration of the EM algorithm: P-EM versus epsilon algorithm. Computational Statistics & Data Analysis, 56(12), 4122-4137.
von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61, 287-307.
von Davier, M., & Yamamoto, K. (2004). Partially observed mixtures of IRT models: An extension of the generalized partial-credit model. Applied Psychological Measurement, 28, 389-406.
Xu, X., & von Davier, M. (2008). Fitting the structured general diagnostic model to NAEP data. ETS Research Report ETS RR-08-27. Princeton, ETS.
Cognitive diagnostic models for dichotomous data can be estimated
with din
(DINA or DINO model) or gdina
(GDINA model, which contains many CDMs as special cases).
For assessment of model fit see modelfit.cor.din
and
anova.gdm
.
See itemfit.sx2
for item fit statistics.
For the estimation of the multidimensional
latent class item response model see the MultiLCIRT package
and sirt package (function sirt::rasch.mirtlc
).
#############################################################################
# EXAMPLE 1: Fraction Dataset 1
# Unidimensional Models for dichotomous data
#############################################################################
data(data.fraction1, package="CDM")
dat <- data.fraction1$data
theta.k <- seq( -6, 6, len=15 ) # discretized ability
#***
# Model 1: Rasch model (normal distribution)
mod1 <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, skillspace="normal",
centered.latent=TRUE)
summary(mod1)
plot(mod1)
#***
# Model 2: Rasch model (log-linear smoothing)
# set the item difficulty of the 8th item to zero
b.constraint <- matrix( c(8,1,0), 1, 3 )
mod2 <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k,
skillspace="loglinear", b.constraint=b.constraint )
summary(mod2)
#***
# Model 3: 2PL model
mod3 <- CDM::gdm( dat, irtmodel="2PL", theta.k=theta.k,
skillspace="normal", standardized.latent=TRUE )
summary(mod3)
if (FALSE) {
#***
# Model 4: include quadratic term in item response function
# using the argument decrease.increments=TRUE leads to a more
# stable estimate
thetaDes <- cbind( theta.k, theta.k^2 )
colnames(thetaDes) <- c( "F1", "F1q" )
mod4 <- CDM::gdm( dat, irtmodel="2PL", theta.k=theta.k,
thetaDes=thetaDes, skillspace="normal",
standardized.latent=TRUE, decrease.increments=TRUE)
summary(mod4)
#***
# Model 5: step function for ICC
# two different probabilities theta < 0 and theta > 0
thetaDes <- matrix( 1*(theta.k>0), ncol=1 )
colnames(thetaDes) <- c( "Fgrm1" )
mod5 <- CDM::gdm( dat, irtmodel="2PL", theta.k=theta.k,
thetaDes=thetaDes, skillspace="normal" )
summary(mod5)
#***
# Model 6: DINA model with din function
mod6 <- CDM::din( dat, q.matrix=matrix( 1, nrow=ncol(dat),ncol=1 ) )
summary(mod6)
#***
# Model 7: Estimating a version of the DINA model with gdm
theta.k <- c(-.5,.5)
mod7 <- CDM::gdm( dat, irtmodel="2PL", theta.k=theta.k, skillspace="loglinear" )
summary(mod7)
#############################################################################
# EXAMPLE 2: Cultural Activities - data.Students
# Unidimensional Models for polytomous data
#############################################################################
data(data.Students, package="CDM")
dat <- data.Students
dat <- dat[, grep( "act", colnames(dat) ) ]
theta.k <- seq( -4, 4, len=11 ) # discretized ability
#***
# Model 1: Partial Credit Model (PCM)
mod1 <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, skillspace="normal",
centered.latent=TRUE)
summary(mod1)
plot(mod1)
#***
# Model 1b: PCM using frequency patterns
mod1b <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, skillspace="normal",
centered.latent=TRUE, use.freqpatt=TRUE)
summary(mod1b)
#***
# Model 2: PCM with two groups
mod2 <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k,
group=CDM::data.Students$urban + 1, skillspace="normal",
centered.latent=TRUE)
summary(mod2)
#***
# Model 3: PCM with loglinear smoothing
b.constraint <- matrix( c(1,2,0), ncol=3 )
mod3 <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k,
skillspace="loglinear", b.constraint=b.constraint )
summary(mod3)
#***
# Model 4: Model with pre-specified item weights in Q-matrix
Qmatrix <- array( 1, dim=c(5,1,2) )
Qmatrix[,1,2] <- 2 # default is score 2 for category 2
# now change the scoring of category 2:
Qmatrix[c(2,4),1,1] <- .74
Qmatrix[c(2,4),1,2] <- 2.3
# for items 2 and 4 the score for category 1 is .74 and for category 2 it is 2.3
mod4 <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, Qmatrix=Qmatrix,
skillspace="normal", centered.latent=TRUE)
summary(mod4)
#***
# Model 5: Generalized partial credit model
mod5 <- CDM::gdm( dat, irtmodel="2PL", theta.k=theta.k,
skillspace="normal", standardized.latent=TRUE )
summary(mod5)
#***
# Model 6: Item-category slope estimation
mod6 <- CDM::gdm( dat, irtmodel="2PLcat", theta.k=theta.k, skillspace="normal",
standardized.latent=TRUE, decrease.increments=TRUE)
summary(mod6)
#***
# Models 7: items with different number of categories
dat0 <- dat
dat0[ paste(dat0[,1])==2, 1 ] <- 1 # 1st item has only two categories
dat0[ paste(dat0[,3])==2, 3 ] <- 1 # 3rd item has only two categories
# Model 7a: PCM
mod7a <- CDM::gdm( dat0, irtmodel="1PL", theta.k=theta.k, centered.latent=TRUE )
summary(mod7a)
# Model 7b: Item category slopes
mod7b <- CDM::gdm( dat0, irtmodel="2PLcat", theta.k=theta.k,
standardized.latent=TRUE, decrease.increments=TRUE )
summary(mod7b)
#############################################################################
# EXAMPLE 3: Fraction Dataset 2
# Multidimensional Models for dichotomous data
#############################################################################
data(data.fraction2, package="CDM")
dat <- data.fraction2$data
Qmatrix <- data.fraction2$q.matrix3
#***
# Model 1: One-dimensional Rasch model
theta.k <- seq( -4, 4, len=11 ) # discretized ability
mod1 <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, centered.latent=TRUE)
summary(mod1)
plot(mod1)
#***
# Model 2: One-dimensional 2PL model
mod2 <- CDM::gdm( dat, irtmodel="2PL", theta.k=theta.k, standardized.latent=TRUE)
summary(mod2)
plot(mod2)
#***
# Model 3: 3-dimensional Rasch Model (normal distribution)
mod3 <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, Qmatrix=Qmatrix,
centered.latent=TRUE, globconv=5*1E-3, conv=1E-4 )
summary(mod3)
#***
# Model 4: 3-dimensional Rasch model (loglinear smoothing)
# set some item parameters of items 4,1 and 2 to zero
b.constraint <- cbind( c(4,1,2), 1, 0 )
mod4 <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, Qmatrix=Qmatrix,
b.constraint=b.constraint, skillspace="loglinear" )
summary(mod4)
#***
# Model 5: define a different theta grid for each dimension
theta.k <- list( "Dim1"=seq( -5, 5, len=11 ),
"Dim2"=seq(-5,5,len=8),
"Dim3"=seq( -3,3,len=6) )
mod5 <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, Qmatrix=Qmatrix,
b.constraint=b.constraint, skillspace="loglinear")
summary(mod5)
#***
# Model 6: multdimensional 2PL model (normal distribution)
theta.k <- seq( -5, 5, len=13 )
a.constraint <- cbind( c(8,1,3), 1:3, 1, 1 ) # fix some slopes to 1
mod6 <- CDM::gdm( dat, irtmodel="2PL", theta.k=theta.k, Qmatrix=Qmatrix,
centered.latent=TRUE, a.constraint=a.constraint, decrease.increments=TRUE,
skillspace="normal")
summary(mod6)
#***
# Model 7: multdimensional 2PL model (loglinear distribution)
a.constraint <- cbind( c(8,1,3), 1:3, 1, 1 )
b.constraint <- cbind( c(8,1,3), 1, 0 )
mod7 <- CDM::gdm( dat, irtmodel="2PL", theta.k=theta.k, Qmatrix=Qmatrix,
b.constraint=b.constraint, a.constraint=a.constraint,
decrease.increments=FALSE, skillspace="loglinear")
summary(mod7)
#############################################################################
# EXAMPLE 4: Unidimensional latent class 1PL IRT model
#############################################################################
# simulate data
set.seed(754)
I <- 20 # number of items
N <- 2000 # number of persons
theta <- c( -2, 0, 1, 2 )
theta <- rep( theta, c(N/4,N/4, 3*N/8, N/8) )
b <- seq(-2,2,len=I)
library(sirt) # use function sim.raschtype from sirt package
dat <- sirt::sim.raschtype( theta=theta, b=b )
theta.k <- seq(-1, 1, len=4) # initial vector of theta
# estimate model
mod1 <- CDM::gdm( dat, theta.k=theta.k, skillspace="est", irtmodel="1PL",
centerintercepts=TRUE, maxiter=200)
summary(mod1)
## Estimated Skill Distribution
## F1 pi.k
## 1 -1.988 0.24813
## 2 -0.055 0.23313
## 3 0.940 0.40059
## 4 2.000 0.11816
#############################################################################
# EXAMPLE 5: Multidimensional latent class IRT model
#############################################################################
# We simulate a two-dimensional IRT model in which theta vectors
# are observed at a fixed discrete grid (see below).
# simulate data
set.seed(754)
I <- 13 # number of items
N <- 2400 # number of persons
# simulate Dimension 1 at 4 discrete theta points
theta <- c( -2, 0, 1, 2 )
theta <- rep( theta, c(N/4,N/4, 3*N/8, N/8) )
b <- seq(-2,2,len=I)
library(sirt) # use simulation function from sirt package
dat1 <- sirt::sim.raschtype( theta=theta, b=b )
# simulate Dimension 2 at 4 discrete theta points
theta <- c( -3, 0, 1.5, 2 )
theta <- rep( theta, c(N/4,N/4, 3*N/8, N/8) )
dat2 <- sirt::sim.raschtype( theta=theta, b=b )
colnames(dat2) <- gsub( "I", "U", colnames(dat2))
dat <- cbind( dat1, dat2 )
# define Q-matrix
Qmatrix <- matrix(0,2*I,2)
Qmatrix[ cbind( 1:(2*I), rep(1:2, each=I) ) ] <- 1
theta.k <- seq(-1, 1, len=4) # initial matrix
theta.k <- cbind( theta.k, theta.k )
colnames(theta.k) <- c("Dim1","Dim2")
# estimate model
mod2 <- CDM::gdm( dat, theta.k=theta.k, skillspace="est", irtmodel="1PL",
Qmatrix=Qmatrix, centerintercepts=TRUE)
summary(mod2)
## Estimated Skill Distribution
## theta.k.Dim1 theta.k.Dim2 pi.k
## 1 -2.022 -3.035 0.25010
## 2 0.016 0.053 0.24794
## 3 0.956 1.525 0.36401
## 4 1.958 1.919 0.13795
#############################################################################
# EXAMPLE 6: Large-scale dataset data.mg
#############################################################################
data(data.mg, package="CDM")
dat <- data.mg[, paste0("I", 1:11 ) ]
theta.k <- seq(-6,6,len=21)
#***
# Model 1: Generalized partial credit model with multiple groups
mod1 <- CDM::gdm( dat, irtmodel="2PL", theta.k=theta.k, group=CDM::data.mg$group,
skillspace="normal", standardized.latent=TRUE)
summary(mod1)
}