gdina.wald.Rd
This function tests with a Wald test for the GDINA model whether a DINA or a ACDM
condensation rule leads to a sufficient item fit compared
to the saturated GDINA rule (de la Torre & Lee, 2013). The Wald test
is accompanied by the RMSEA fit and weighted and unweighted
distance measures (wgtdist
, uwgtdist
), see Details
(compare Ma, Iaconangelo, & de la Torre, 2016).
A fitted gdina
model
Number of digits after decimal used for rounding.
Vector including variables which should
be displayed in summary
. See the output stats
.
Further arguments to be passed
Let \(P_j( \alpha _l)\) the estimated item response function for the
GDINA model and \(\hat{P}_j( \alpha _l)\) the item response
model for the approximated model (DINA, DINO or ACDM).
The unweighted distance uwgtdist
as a measure of misfit is defined as
$$uwgtdist=\frac{1}{2^K} \sum_l ( P_j( \alpha _l) - \hat{P}_j( \alpha _l) )^2$$
The weighted distance wgtdist
measures the discrepancy
with respected to the probabilities \(w_l=P( \alpha_l)\) of estimated
skill classes
$$wgtdist=\sum_l w_l (P_j( \alpha _l) - \hat{P}_j( \alpha _l) )^2$$
Data frame with Wald statistic for every item, corresponding p values and a RMSEA fit statistic
de la Torre, J., & Lee, Y. S. (2013). Evaluating the Wald test for item-level comparison of saturated and reduced models in cognitive diagnosis. Journal of Educational Measurement, 50, 355-373.
Ma, W., Iaconangelo, C., & de la Torre, J. (2016). Model similarity, model selection, and attribute classification. Applied Psychological Measurement, 40(3), 200-217.
See the GDINA::modelcomp
function in the
GDINA package for similar functionality.
if (FALSE) {
#############################################################################
# EXAMPLE 1: Wald test for DINA simulated data sim.dina
#############################################################################
data(sim.dina, package="CDM")
data(sim.qmatrix, package="CDM")
# Model 1: estimate GDINA model
mod1 <- CDM::gdina( sim.dina, q.matrix=sim.qmatrix, rule="GDINA")
summary(mod1)
# perform Wald test
res1 <- CDM::gdina.wald( mod1 )
summary(res1)
# -> results show that all but one item fit according to the DINA rule
# select some output
summary(res1, vars=c("wgtdist", "p") )
}