gdina.wald.Rd
This function tests with a Wald test for the GDINA model whether a DINA or a ACDM
condensation rule leads to a sufficient item fit compared
to the saturated GDINA rule (de la Torre & Lee, 2013). The Wald test
is accompanied by the RMSEA fit and weighted and unweighted
distance measures (wgtdist
, uwgtdist
), see Details
(compare Ma, Iaconangelo, & de la Torre, 2016).
A fitted gdina
model
Number of digits after decimal used for rounding.
Vector including variables which should
be displayed in summary
. See the output stats
.
Further arguments to be passed
Let Pj(αl) the estimated item response function for the
GDINA model and ˆPj(αl) the item response
model for the approximated model (DINA, DINO or ACDM).
The unweighted distance uwgtdist
as a measure of misfit is defined as
uwgtdist=12K∑l(Pj(αl)−ˆPj(αl))2
The weighted distance wgtdist
measures the discrepancy
with respected to the probabilities wl=P(αl) of estimated
skill classes
wgtdist=∑lwl(Pj(αl)−ˆPj(αl))2
Data frame with Wald statistic for every item, corresponding p values and a RMSEA fit statistic
de la Torre, J., & Lee, Y. S. (2013). Evaluating the Wald test for item-level comparison of saturated and reduced models in cognitive diagnosis. Journal of Educational Measurement, 50, 355-373.
Ma, W., Iaconangelo, C., & de la Torre, J. (2016). Model similarity, model selection, and attribute classification. Applied Psychological Measurement, 40(3), 200-217.
See the GDINA::modelcomp
function in the
GDINA package for similar functionality.
if (FALSE) {
#############################################################################
# EXAMPLE 1: Wald test for DINA simulated data sim.dina
#############################################################################
data(sim.dina, package="CDM")
data(sim.qmatrix, package="CDM")
# Model 1: estimate GDINA model
mod1 <- CDM::gdina( sim.dina, q.matrix=sim.qmatrix, rule="GDINA")
summary(mod1)
# perform Wald test
res1 <- CDM::gdina.wald( mod1 )
summary(res1)
# -> results show that all but one item fit according to the DINA rule
# select some output
summary(res1, vars=c("wgtdist", "p") )
}