IRT.irfprobPlot.Rd
This function plots item response functions for fitted
item response models for which the IRT.irfprob
method is defined.
IRT.irfprobPlot( object, items=NULL, min.theta=-4, max.theta=4, cumul=FALSE,
smooth=TRUE, ask=TRUE, n.theta=40, package="lattice",... )
Fitted item response model for which the IRT.irfprob
method is defined
Vector of indices of selected items.
Minimum theta to be displayed.
Maximum theta to be displayed.
Optional logical indicating whether cumulated item response functions \(P( X \ge k | \theta )\) should be displayed.
Optional logical indicating whether item response functions should be smoothed for plotting.
Logical for asking for a new plot.
Number of theta points if smooth=TRUE
is chosen.
String indicating which package should be used for plotting
the item response curves. Options are "lattice"
or "graphics"
.
More arguments to be passed for the plot in lattice.
if (FALSE) {
#############################################################################
# EXAMPLE 1: Plot item response functions from a unidimensional model
#############################################################################
data(data.Students, package="CDM")
dat <- data.Students
resp <- dat[, paste0("sc",1:4) ]
resp[ paste(resp[,1])==3,1] <- 2
psych::describe(resp)
#--- Model 1: PCM in CDM::gdm
theta.k <- seq( -5, 5, len=21 )
mod1 <- CDM::gdm( dat=resp, irtmodel="1PL", theta.k=theta.k, skillspace="normal",
centered.latent=TRUE)
summary(mod1)
# plot
IRT.irfprobPlot( mod1 )
# plot in graphics package (which comes with R base version)
IRT.irfprobPlot( mod1, package="graphics")
# plot first and third item and do not smooth discretized item response
# functions in IRT.irfprob
IRT.irfprobPlot( mod1, items=c(1,3), smooth=FALSE )
# cumulated IRF
IRT.irfprobPlot( mod1, cumul=TRUE )
#############################################################################
# EXAMPLE 2: Fitted mutidimensional model with gdm
#############################################################################
dat <- CDM::data.fraction2$data
Qmatrix <- CDM::data.fraction2$q.matrix3
# Model 1: 3-dimensional Rasch Model (normal distribution)
theta.k <- seq( -4, 4, len=11 ) # discretized ability
mod1 <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, Qmatrix=Qmatrix,
centered.latent=TRUE, maxiter=10 )
summary(mod1)
# unsmoothed curves
IRT.irfprobPlot(mod1, smooth=FALSE)
# smoothed curves
IRT.irfprobPlot(mod1)
}