skillspace.approximation.Rd
This function approximates the skill space with \(K\) skills to approximate a (typically high-dimensional) skill space of \(2^K\) classes by \(L\) classes \((L < 2^K)\). The large number of latent classes are represented by underlying continuous latent variables for the dichotomous skills (see George & Robitzsch, 2014, for more details).
skillspace.approximation(L, K, nmax=5000)
Number of skill classes used for approximation
Number of skills
Number of quasi-randomly generated skill classes using the QUnif
function in sfsmisc
A matrix containing skill classes in rows
George, A. C., & Robitzsch, A. (2014). Multiple group cognitive diagnosis models, with an emphasis on differential item functioning. Psychological Test and Assessment Modeling, 56(4), 405-432.
This function uses the sfsmisc::QUnif
function from the sfsmisc
package.
See also gdina
(Example 9).
#############################################################################
# EXAMPLE 1: Approximate a skill space of K=8 eight skills by 20 classes
#############################################################################
#=> 2^8=256 latent classes if all latent classes would be used
CDM::skillspace.approximation( L=20, K=8 )
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## P00000000 0 0 0 0 0 0 0 0
## P00000001 0 0 0 0 0 0 0 1
## P00001011 0 0 0 0 1 0 1 1
## P00010011 0 0 0 1 0 0 1 1
## P00101001 0 0 1 0 1 0 0 1
## [...]
## P11011110 1 1 0 1 1 1 1 0
## P11100110 1 1 1 0 0 1 1 0
## P11111111 1 1 1 1 1 1 1 1