data.hr
(Ravand et al., 2013)data.hr.Rd
Dataset data.hr
used for illustrating some functionalities
of the CDM package (Ravand, Barati, & Widhiarso, 2013).
data(data.hr)
The format of the dataset is:
List of 2
$ data : num [1:1550, 1:35] 1 0 1 1 1 0 1 1 1 0 ...
$ q.matrix:'data.frame':
..$ Skill1: int [1:35] 0 0 0 0 0 0 1 0 0 0 ...
..$ Skill2: int [1:35] 0 0 0 0 1 0 0 0 0 0 ...
..$ Skill3: int [1:35] 0 1 1 1 1 0 0 1 0 0 ...
..$ Skill4: int [1:35] 1 0 0 0 0 0 0 0 1 1 ...
..$ Skill5: int [1:35] 0 0 0 0 0 1 0 0 1 1 ...
Simulated data according to Ravand et al. (2013).
Ravand, H., Barati, H., & Widhiarso, W. (2013). Exploring diagnostic capacity of a high stakes reading comprehension test: A pedagogical demonstration. Iranian Journal of Language Testing, 3(1), 1-27.
if (FALSE) {
data(data.hr, package="CDM")
dat <- data.hr$data
Q <- data.hr$q.matrix
#*************
# Model 1: DINA model
mod1 <- CDM::din( dat, q.matrix=Q )
summary(mod1) # summary
# plot results
plot(mod1)
# inspect coefficients
coef(mod1)
# posterior distribution
posterior <- mod1$posterior
round( posterior[ 1:5, ], 4 ) # first 5 entries
# estimate class probabilities
mod1$attribute.patt
# individual classifications
mod1$pattern[1:5,] # first 5 entries
#*************
# Model 2: GDINA model
mod2 <- CDM::gdina( dat, q.matrix=Q)
summary(mod2)
#*************
# Model 3: Reduced RUM model
mod3 <- CDM::gdina( dat, q.matrix=Q, rule="RRUM" )
summary(mod3)
#--------
# model comparisons
# DINA vs GDINA
anova( mod1, mod2 )
## Model loglike Deviance Npars AIC BIC Chisq df p
## 1 Model 1 -31391.27 62782.54 101 62984.54 63524.49 195.9099 20 0
## 2 Model 2 -31293.32 62586.63 121 62828.63 63475.50 NA NA NA
# RRUM vs. GDINA
anova( mod2, mod3 )
## Model loglike Deviance Npars AIC BIC Chisq df p
## 2 Model 2 -31356.22 62712.43 105 62922.43 63483.76 125.7924 16 0
## 1 Model 1 -31293.32 62586.64 121 62828.64 63475.50 NA NA NA
# DINA vs. RRUM
anova(mod1,mod3)
## Model loglike Deviance Npars AIC BIC Chisq df p
## 1 Model 1 -31391.27 62782.54 101 62984.54 63524.49 70.11246 4 0
## 2 Model 2 -31356.22 62712.43 105 62922.43 63483.76 NA NA NA
#-------
# model fit
# DINA
fmod1 <- CDM::modelfit.cor.din( mod1, jkunits=0)
summary(fmod1)
## Test of Global Model Fit
## type value p
## 1 max(X2) 16.35495 0.03125
## 2 abs(fcor) 0.10341 0.01416
##
## Fit Statistics
## est
## MADcor 0.01911
## SRMSR 0.02445
## MX2 0.93157
## 100*MADRESIDCOV 0.39100
## MADQ3 0.02373
# GDINA
fmod2 <- CDM::modelfit.cor.din( mod2, jkunits=0)
summary(fmod2)
## Test of Global Model Fit
## type value p
## 1 max(X2) 7.73670 1
## 2 abs(fcor) 0.07215 1
##
## Fit Statistics
## est
## MADcor 0.01830
## SRMSR 0.02300
## MX2 0.82584
## 100*MADRESIDCOV 0.37390
## MADQ3 0.02383
# RRUM
fmod3 <- CDM::modelfit.cor.din( mod3, jkunits=0)
summary(fmod3)
## Test of Global Model Fit
## type value p
## 1 max(X2) 15.49369 0.04925
## 2 abs(fcor) 0.10076 0.02201
##
## Fit Statistics
## est
## MADcor 0.01868
## SRMSR 0.02374
## MX2 0.87999
## 100*MADRESIDCOV 0.38409
## MADQ3 0.02416
}