din.equivalent.class.Rd
This function computes indistinguishable skill classes for the DINA and DINO model (Gross & George, 2014; Zhang, DeCarlo & Ying, 2013).
din.equivalent.class(q.matrix, rule="DINA")
The Q-matrix (see din
).
The condensation rule. If it is a string, then the rule applies
to all items. If it is a vector, then for each item DINA
or DINO
rule can be chosen.
A list with following entries:
Matrix of latent responses
Latent responses represented as a string
Matrix containing all skill classes
Gini coefficient of the frequency distribution of identifiable skill classes which result in the same latent response
Data frame with skill class (skillclass
),
latent responses (latent.response
) and an identifier for
distinguishable skill classes (distinguish.class
).
Gross, J. & George, A. C. (2014). On prerequisite relations between attributes in noncompensatory diagnostic classification. Methodology, 10(3), 100-107.
Zhang, S. S., DeCarlo, L. T., & Ying, Z. (2013). Non-identifiability, equivalence classes, and attribute-specific classification in Q-matrix based cognitive diagnosis models. arXiv preprint, arXiv:1303.0426.
#############################################################################
# EXAMPLE 1: Equivalency classes for DINA model for fraction subtraction data
#############################################################################
#-- DINA models
data(data.fraction2, package="CDM")
# first Q-matrix
Q1 <- data.fraction2$q.matrix1
m1 <- CDM::din.equivalent.class( q.matrix=Q1, rule="DINA" )
## 8 Skill classes | 5 distinguishable skill classes | Gini coefficient=0.3
# second Q-matrix
Q1 <- data.fraction2$q.matrix2
m1 <- CDM::din.equivalent.class( q.matrix=Q1, rule="DINA" )
## 32 Skill classes | 9 distinguishable skill classes | Gini coefficient=0.5
# third Q-matrix
Q1 <- data.fraction2$q.matrix3
m1 <- CDM::din.equivalent.class( q.matrix=Q1, rule="DINA" )
## 8 Skill classes | 8 distinguishable skill classes | Gini coefficient=0
# original fraction subtraction data
m1 <- CDM::din.equivalent.class( q.matrix=CDM::fraction.subtraction.qmatrix, rule="DINA")
## 256 Skill classes | 58 distinguishable skill classes | Gini coefficient=0.659