predict.Rd
This function computes expected values for each person and each item based on the individual posterior distribution. The output of this function can be the basis of creating item and person fit statistics.
Object for the S3 methods IRT.irfprob
and
IRT.posterior
are defined. In the CDM packages,
these are the objects of class din
, gdina
, mcdina
,
slca
or gdm
.
Dataset with item responses
Group index for use
Further arguments to be passed.
A list with following entries
Array with expected values (persons \(\times\) classes \(\times\) items)
Array with expected probabilities for each category (persons \(\times\) categories \(\times\) classes \(\times\) items)
Array with variance in predicted values for each person and each item.
Array with residuals for each person and each item
Array with standardized residuals for each person and each item
if (FALSE) {
#############################################################################
# EXAMPLE 1: Fitted Rasch model in TAM package
#############################################################################
#--- Model 1: Rasch model
library(TAM)
mod1 <- TAM::tam.mml(resp=TAM::sim.rasch)
# apply IRT.predict function
prmod1 <- CDM::IRT.predict(mod1, mod1$resp )
str(prmod1)
}
#############################################################################
# EXAMPLE 2: Predict function for din
#############################################################################
# DINA Model
mod1 <- CDM::din( CDM::sim.dina, q.matr=CDM::sim.qmatrix, rule="DINA" )
summary(mod1)
# apply predict method
prmod1 <- CDM::IRT.predict( mod1, sim.dina )
str(prmod1)