cdi.kli.Rd
This function computes several cognitive diagnostic indices grounded on the Kullback-Leibler information (Rupp, Henson & Templin, 2009, Ch. 13) at the test, item, attribute and item-attribute level. See Henson and Douglas (2005) and Henson, Roussos, Douglas and He (2008) for more details.
cdi.kli(object)
# S3 method for cdi.kli
summary(object, digits=2, ...)
A list with following entries
Test discrimination which is the sum of all global item discrimination indices
Attribute discriminations
Global item discriminations (Cognitive diagnostic index)
Attribute-specific item discrimination
Array with Kullback-Leibler informations of all items (first dimension) and skill classes (in the second and third dimension)
Matrix containing all used skill classes in the model
Matrix containing Hamming distance between skill classes
Used probabilities
Used Q-matrix
Data frame with test- and item-specific discrimination statistics
Henson, R., DiBello, L., & Stout, B. (2018). A generalized approach to defining item discrimination for DCMs. Measurement: Interdisciplinary Research and Perspectives, 16(1), 18-29. http://dx.doi.org/10.1080/15366367.2018.1436855
Henson, R., & Douglas, J. (2005). Test construction for cognitive diagnosis. Applied Psychological Measurement, 29, 262-277. http://dx.doi.org/10.1177/0146621604272623
Henson, R., Roussos, L., Douglas, J., & He, X. (2008). Cognitive diagnostic attribute-level discrimination indices. Applied Psychological Measurement, 32, 275-288. http://dx.doi.org/10.1177/0146621607302478
Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic Measurement: Theory, Methods, and Applications. New York: The Guilford Press.
See discrim.index
for computing discrimination indices at the
probability metric.
See Henson, DiBello and Stout (2018) for an overview of different discrimination indices.
#############################################################################
# EXAMPLE 1: Examples based on CDM::sim.dina
#############################################################################
data(sim.dina, package="CDM")
data(sim.qmatrix, package="CDM")
mod <- CDM::din( sim.dina, q.matrix=sim.qmatrix )
summary(mod)
## Item parameters
## item guess slip IDI rmsea
## Item1 Item1 0.086 0.210 0.704 0.014
## Item2 Item2 0.109 0.239 0.652 0.034
## Item3 Item3 0.129 0.185 0.686 0.028
## Item4 Item4 0.226 0.218 0.556 0.019
## Item5 Item5 0.059 0.000 0.941 0.002
## Item6 Item6 0.248 0.500 0.252 0.036
## Item7 Item7 0.243 0.489 0.268 0.041
## Item8 Item8 0.278 0.125 0.597 0.109
## Item9 Item9 0.317 0.027 0.656 0.065
cmod <- CDM::cdi.kli( mod )
# attribute discrimination indices
round( cmod$attr_disc, 3 )
## V1 V2 V3
## 1.966 2.506 11.169
# look at global item discrimination indices
round( cmod$glob_item_disc, 3 )
## > round( cmod$glob_item_disc, 3 )
## Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9
## 0.594 0.486 0.533 0.465 5.913 0.093 0.040 0.397 0.656
# correlation of IDI and global item discrimination
stats::cor( cmod$glob_item_disc, mod$IDI )
## [1] 0.6927274
# attribute-specific item indices
round( cmod$attr_item_disc, 3 )
## V1 V2 V3
## Item1 0.648 0.648 0.000
## Item2 0.000 0.530 0.530
## Item3 0.581 0.000 0.581
## Item4 0.697 0.000 0.000
## Item5 0.000 0.000 8.870
## Item6 0.000 0.140 0.000
## Item7 0.040 0.040 0.040
## Item8 0.000 0.433 0.433
## Item9 0.000 0.715 0.715
## Note that attributes with a zero entry for an item
## do not differ from zero for the attribute specific item index