clpm_to_ctm.Rd
Transforms path coefficients \(\bold{\Phi}(\Delta t_1)\) of a cross-lagged panel model (CLPM) based on time interval \(\Delta t_1\) into a time interval \(\Delta t_2\). The transformation is based on the assumption of a continuous time model (CTM; Voelkle, Oud, Davidov, & Schmidt, 2012) including a drift matrix \(\bold{A}\). The transformation relies on the matrix exponential function (see Kuiper & Ryan, 2018), i.e. \(\bold{\Phi}(\Delta t_1)=\exp( \bold{A} \Delta t_1 ) \).
clpm_to_ctm(Phi1, delta1=1, delta2=2, Phi1_vcov=NULL)
Matrix of path coefficients \(\bold{\Phi}(\Delta t_1)\)
Numeric \(\Delta t_1\)
Numeric \(\Delta t_2\)
Optional covariance matrix for parameter estimates of \(\bold{\Phi}(\Delta t_1)\)
A list with following entries
Drift matrix
Standard errors of drift matrix
Covariance matrix of drift matrix
Path coefficients \(\bold{\Phi}(\Delta t_2)\)
Standard errors for \(\bold{\Phi}(\Delta t_2)\)
Covariance matrix for \(\bold{\Phi}(\Delta t_2)\)
Kuiper, R. M., & Ryan, O. (2018). Drawing conclusions from cross-lagged relationships: Re-considering the role of the time-interval. Structural Equation Modeling, 25(5), 809-823. doi:10.1080/10705511.2018.1431046
Voelkle, M. C., Oud, J. H., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17(2), 176-192. doi:10.1037/a0027543
#############################################################################
# EXAMPLE 1: Example of Voelkle et al. (2012)
#############################################################################
library(expm)
# path coefficient matrix of Voelkle et al. (2012), but see
# also Kuiper and Ryan (2018)
Phi1 <- matrix( c( .64, .18,
.03, .89 ), nrow=2, ncol=2, byrow=TRUE )
# transformation to time interval 2
mod <- LAM::clpm_to_ctm(Phi1, delta1=1, delta2=2)
print(mod)
if (FALSE) {
#############################################################################
# EXAMPLE 2: Example with two dimensions
#############################################################################
library(STARTS)
library(lavaan)
data(data.starts02, package="STARTS")
dat <- data.starts02$younger_cohort
cormat <- cov2cor(as.matrix(dat$covmat))
#-- estimate CLPM
lavmodel <- "
a2 ~ a1 + b1
b2 ~ a1 + b1
"
mod <- lavaan::sem(lavmodel, sample.cov=cormat, sample.nobs=500)
summary(mod)
#- select parameters
pars <- c("a2~a1", "a2~b1", "b2~a1", "b2~b1")
Phi1 <- matrix( coef(mod)[pars], 2, 2, byrow=TRUE)
Phi1_vcov <- vcov(mod)[ pars, pars ]
# conversion to time interval 1.75
LAM::clpm_to_ctm(Phi1=Phi1, delta1=1, delta2=1.75, Phi1_vcov=Phi1_vcov)
#############################################################################
# EXAMPLE 3: Example with three dimensions
#############################################################################
library(STARTS)
library(lavaan)
data(data.starts02, package="STARTS")
dat <- data.starts02$younger_cohort
cormat <- cov2cor(as.matrix(dat$covmat))
#-- estimate CLPM
lavmodel <- "
a4 ~ a1 + b1 + c1
b4 ~ a1 + b1 + c1
c4 ~ a1 + b1 + c1
"
mod <- lavaan::sem(lavmodel, sample.cov=cormat, sample.nobs=500)
summary(mod)
#- select parameters
pars <- 1:9
Phi1 <- matrix( coef(mod)[pars], 3, 3, byrow=TRUE)
Phi1_vcov <- vcov(mod)[ pars, pars ]
# conversion frpm time interval 3 to time interval 1
LAM::clpm_to_ctm(Phi1=Phi1, delta1=3, delta2=1, Phi1_vcov=Phi1_vcov)
}