mlnormal.Rd
The mlnormal
estimates statistical model for multivariate normally
distributed outcomes with specified mean structure and
covariance structure (see Details and Examples). Model classes include
multilevel models, factor analysis, structural equation models,
multilevel structural equation models, social relations model and
perhaps more.
The estimation can be conducted under maximum likelihood, restricted maximum likelihood and maximum posterior estimation with prior distribution. Regularization (i.e. LASSO penalties) is also accomodated.
mlnormal(y, X, id, Z_list, Z_index, beta=NULL, theta, method="ML", prior=NULL,
lambda_beta=NULL, weights_beta=NULL, lambda_theta=NULL, weights_theta=NULL,
beta_lower=NULL, beta_upper=NULL, theta_lower=NULL, theta_upper=NULL,
maxit=800, globconv=1e-05, conv=1e-06, verbose=TRUE, REML_shortcut=NULL,
use_ginverse=FALSE, vcov=TRUE, variance_shortcut=TRUE, use_Rcpp=TRUE,
level=0.95, numdiff.parm=1e-04, control_beta=NULL, control_theta=NULL)
# S3 method for mlnormal
summary(object, digits=4, file=NULL, ...)
# S3 method for mlnormal
print(x, digits=4, ...)
# S3 method for mlnormal
coef(object, ...)
# S3 method for mlnormal
logLik(object, ...)
# S3 method for mlnormal
vcov(object, ...)
# S3 method for mlnormal
confint(object, parm, level=.95, ... )
Vector of outcomes
Matrix of covariates
Vector of identifiers (subjects or clusters, see Details)
List of design matrices for covariance matrix (see Details)
Array containing loadings of design matrices (see Details). The dimensions are units \(\times\) matrices \(\times\) parameters.
Initial vector for \(\bold{\beta}\)
Initial vector for \(\bold{\theta}\)
Estimation method. Can be either "ML"
or "REML"
.
Prior distributions. Can be conveniently specified in a string
which is processed by the function prior_model_parse
. Only
univariate prior distributions can be specified.
Parameter \(\lambda_{\bold{\beta}}\) for penalty function \(P( \bold{\beta} )=\lambda_{\bold{\beta}} \sum_h w_{\bold{\beta}h} | \beta _h |\)
Parameter vector \(\bold{w}_{\bold{\beta}}\) for penalty function \(P( \bold{\beta} )=\lambda_{\bold{\beta}} \sum_h w_{\bold{\beta}h} | \beta _h |\)
Parameter \(\lambda_{\bold{\theta}}\) for penalty function \(P( \bold{\theta} )=\lambda_{\bold{\theta}} \sum_h w_{\bold{\theta}h} | \theta _h | \)
Parameter vector \(\bold{w}_{\bold{\theta}}\) for penalty function \(P( \bold{\theta} )=\lambda_{\bold{\theta}} \sum_h w_{\bold{\theta}h} | \theta _h | \)
Vector containing lower bounds for \(\bold{\beta}\) parameter
Vector containing upper bounds for \(\bold{\beta}\) parameter
Vector containing lower bounds for \(\bold{\theta}\) parameter
Vector containing upper bounds for \(\bold{\theta}\) parameter
Maximum number of iterations
Convergence criterion deviance
Maximum parameter change
Print progress?
Logical indicating whether computational shortcuts should be used for REML estimation
Logical indicating whether a generalized inverse should be used
Logical indicating whether a covariance matrix of \(\bold{\theta}\) parameter estimates should be computed in case of REML (which is computationally demanding)
Logical indicating whether computational shortcuts for calculating covariance matrices should be used
Logical indicating whether the Rcpp package should be used
Confidence level
Numerical differentiation parameter
List with control arguments for \(\bold{\beta}\) estimation. The default
is list( maxiter=10, conv=1E-4, ridge=1E-6)
.
List with control arguments for \(\bold{\theta}\) estimation. The default
is list( maxiter=10, conv=1E-4, ridge=1E-6)
.
Object of class mlnormal
Number of digits used for rounding
File name
Parameter to be selected for confint
method
Further arguments to be passed
Object of class mlnormal
The data consists of outcomes \(\bold{y}_i\) and covariates \(\bold{X}_i\)
for unit \(i\). The unit can be subjects, clusters (like schools)
or the full outcome vector. It is assumed that \(\bold{y}_i\) is normally
distributed as \(N( \bold{\mu}_i, \bold{V}_i )\) where the mean structure is
modelled as $$ \bold{\mu}_i=\bold{X}_i \bold{\beta} $$ and the covariance
structure \( \bold{V}_i\) depends on a parameter vector \(\bold{\theta}\).
More specifically, the covariance matrix \( \bold{V}_i\) is modelled as
a sum of functions of the parameter \(\bold{\theta}\) and known design matrices
\(\bold{Z}_{im}\) for unit \(i\) (\(m=1,\ldots,M\)). The model is
$$\bold{V}_i=\sum_{m=1}^M \bold{Z}_{im} \gamma_{im} \qquad \mathrm{with}
\qquad \gamma_{im}=\prod_{h=1}^H \theta_h^{q_{imh}} $$
where \(q_{imh}\) are non-negative known integers specified in
Z_index
and \(\bold{Z}_{im}\) are design matrices specified
in Z_list
.
The estimation follows Fisher scoring (Jiang, 2007; for applications see also Longford, 1987; Lee, 1990; Gill & Swartz, 2001) and the regularization approach is as described in Lin, Pang and Jiang (2013) (see also Krishnapuram, Carin, Figueiredo, & Hartemink, 2005).
List with entries
Estimated \(\bold{\theta}\) parameter
Estimated \(\bold{\beta}\) parameter
Summary of \(\bold{\theta}\) parameters
Summary of \(\bold{\beta}\) parameters
Estimated parameters
Covariance matrix of estimated parameters
Information criteria
List with fitted covariance matrices \(\bold{V}_i\)
List with inverses of fitted covariance matrices \(\bold{V}_i\)
Some arguments in case of prior distributions
More values
Gill, P. S., & Swartz, T. B. (2001). Statistical analyses for round robin interaction data. Canadian Journal of Statistics, 29, 321-331. doi:10.2307/3316080
Jiang, J. (2007). Linear and generalized linear mixed models and their applications. New York: Springer.
Krishnapuram, B., Carin, L., Figueiredo, M. A., & Hartemink, A. J. (2005). Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 957-968. doi:10.1109/TPAMI.2005.127
Lee, S. Y. (1990). Multilevel analysis of structural equation models. Biometrika, 77, 763-772. doi:10.1093/biomet/77.4.763
Lin, B., Pang, Z., & Jiang, J. (2013). Fixed and random effects selection by REML and pathwise coordinate optimization. Journal of Computational and Graphical Statistics, 22, 341-355. doi:10.1080/10618600.2012.681219
Longford, N. T. (1987). A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects. Biometrika, 74, 817-827. doi:10.1093/biomet/74.4.817
See lavaan, sem, lava, OpenMx or nlsem packages for estimation of (single level) structural equation models.
See the regsem and lsl packages for regularized structural equation models.
See lme4 or nlme package for estimation of multilevel models.
See the lmmlasso and glmmLasso packages for regularized mixed effects models.
See OpenMx and xxM packages (http://xxm.times.uh.edu/) for estimation of multilevel structural equation models.
if (FALSE) {
#############################################################################
# EXAMPLE 1: Two-level random intercept model
#############################################################################
#--------------------------------------------------------------
# Simulate data
#--------------------------------------------------------------
set.seed(976)
G <- 150 ; rg <- c(10,20) # 150 groups with group sizes ranging from 10 to 20
#* simulate group sizes
ng <- round( stats::runif( G, min=rg[1], max=rg[2] ) )
idcluster <- rep(1:G, ng )
#* simulate covariate
iccx <- .3
x <- rep( stats::rnorm( G, sd=sqrt( iccx) ), ng ) +
stats::rnorm( sum(ng), sd=sqrt( 1 - iccx) )
#* simulate outcome
b0 <- 1.5 ; b1 <- .4 ; iccy <- .2
y <- b0 + b1*x + rep( stats::rnorm( G, sd=sqrt( iccy) ), ng ) +
stats::rnorm( sum(ng), sd=sqrt( 1 - iccy) )
#-----------------------
#--- arrange input for mlnormal function
id <- idcluster # cluster is identifier
X <- cbind( 1, x ) # matrix of covariates
N <- length(id) # number of units (clusters), which is G
MD <- max(ng) # maximum number of persons in a group
NP <- 2 # number of covariance parameters theta
#* list of design matrix for covariance matrix
# In the case of the random intercept model, the covariance structure is
# tau^2 * J + sigma^2 * I, where J is a matrix of ones and I is the
# identity matrix
Z <- as.list(1:G)
for (gg in 1:G){
Ngg <- ng[gg]
Z[[gg]] <- as.list( 1:2 )
Z[[gg]][[1]] <- matrix( 1, nrow=Ngg, ncol=Ngg ) # level 2 variance
Z[[gg]][[2]] <- diag(1,Ngg) # level 1 variance
}
Z_list <- Z
#* parameter list containing the powers of parameters
Z_index <- array( 0, dim=c(G,2,2) )
Z_index[ 1:G, 1, 1] <- Z_index[ 1:G, 2, 2] <- 1
#** starting values and parameter names
beta <- c( 1, 0 )
names(beta) <- c("int", "x")
theta <- c( .05, 1 )
names(theta) <- c("tau2", "sig2" )
#** create dataset for lme4 for comparison
dat <- data.frame(y=y, x=x, id=id )
#--------------------------------------------------------------
# Model 1: Maximum likelihood estimation
#--------------------------------------------------------------
#** mlnormal function
mod1a <- LAM::mlnormal( y=y, X=X, id=id, Z_list=Z_list, Z_index=Z_index,
beta=beta, theta=theta, method="ML" )
summary(mod1a)
# lme4::lmer function
library(lme4)
mod1b <- lme4::lmer( y ~ x + (1 | id ), data=dat, REML=FALSE )
summary(mod1b)
#--------------------------------------------------------------
# Model 2: Restricted maximum likelihood estimation
#--------------------------------------------------------------
#** mlnormal function
mod2a <- LAM::mlnormal( y=y, X=X, id=id, Z_list=Z_list, Z_index=Z_index,
beta=beta, theta=theta, method="REML" )
summary(mod2a)
# lme4::lmer function
mod2b <- lme4::lmer( y ~ x + (1 | id ), data=dat, REML=TRUE )
summary(mod2b)
#--------------------------------------------------------------
# Model 3: Estimation of standard deviation instead of variances
#--------------------------------------------------------------
# The model is now parametrized in standard deviations
# Variances are then modeled as tau^2 and sigma^2, respectively.
Z_index2 <- 2*Z_index # change loading matrix
# estimate model
mod3 <- LAM::mlnormal( y=y, X=X, id=id, Z_list=Z_list, Z_index=Z_index2,
beta=beta, theta=theta )
summary(mod3)
#--------------------------------------------------------------
# Model 4: Maximum posterior estimation
#--------------------------------------------------------------
# specify prior distributions for parameters
prior <- "
tau2 ~ dgamma(NA, 2, .5 )
sig2 ~ dinvgamma(NA, .1, .1 )
x ~ dnorm( NA, .2, 1000 )
"
# estimate model in mlnormal
mod4 <- LAM::mlnormal( y=y, X=X, id=id, Z_list=Z_list, Z_index=Z_index,
beta=beta, theta=theta, method="REML", prior=prior, vcov=FALSE )
summary(mod4)
#--------------------------------------------------------------
# Model 5: Estimation with regularization on beta and theta parameters
#--------------------------------------------------------------
#*** penalty on theta parameter
lambda_theta <- 10
weights_theta <- 1 + 0 * theta
#*** penalty on beta parameter
lambda_beta <- 3
weights_beta <- c( 0, 1.8 )
# estimate model
mod5 <- LAM::mlnormal( y=y, X=X, id=id, Z_list=Z_list, Z_index=Z_index,
beta=beta, theta=theta, method="ML", maxit=maxit,
lambda_theta=lambda_theta, weights_theta=weights_theta,
lambda_beta=lambda_beta, weights_beta=weights_beta )
summary(mod5)
#############################################################################
# EXAMPLE 2: Latent covariate model, two-level regression
#############################################################################
# Yb=beta_0 + beta_b*Xb + eb (between level) and
# Yw=beta_w*Xw + ew (within level)
#--------------------------------------------------------------
# Simulate data from latent covariate model
#--------------------------------------------------------------
set.seed(865)
# regression parameters
beta_0 <- 1 ; beta_b <- .7 ; beta_w <- .3
G <- 200 # number of groups
n <- 15 # group size
iccx <- .2 # intra class correlation x
iccy <- .35 # (conditional) intra class correlation y
# simulate latent variables
xb <- stats::rnorm(G, sd=sqrt( iccx ) )
yb <- beta_0 + beta_b * xb + stats::rnorm(G, sd=sqrt( iccy ) )
xw <- stats::rnorm(G*n, sd=sqrt( 1-iccx ) )
yw <- beta_w * xw + stats::rnorm(G*n, sd=sqrt( 1-iccy ) )
group <- rep( 1:G, each=n )
x <- xw + xb[ group ]
y <- yw + yb[ group ]
# test results on true data
lm( yb ~ xb )
lm( yw ~ xw )
# create vector of outcomes in the form
# ( y_11, x_11, y_21, x_21, ... )
dat <- cbind( y, x )
dat
Y <- as.vector( t(dat) ) # outcome vector
ny <- length(Y)
X <- matrix( 0, nrow=ny, ncol=2 )
X[ seq(1,ny,2), 1 ] <- 1 # design vector for mean y
X[ seq(2,ny,2), 2 ] <- 1 # design vector for mean x
id <- rep( group, each=2 )
#--------------------------------------------------------------
# Model 1: Linear regression ignoring multilevel structure
#--------------------------------------------------------------
# y=beta_0 + beta_t *x + e
# Var(y)=beta_t^2 * var_x + var_e
# Cov(y,x)=beta_t * var_x
# Var(x)=var_x
#** initial parameter values
theta <- c( 0, 1, .5 )
names(theta) <- c( "beta_t", "var_x", "var_e")
beta <- c(0,0)
names(beta) <- c("mu_y","mu_x")
# The unit i is a cluster in this example.
#--- define design matrices | list Z_list
Hlist <- list( matrix( c(1,0,0,0), 2, 2 ), # var(y)
matrix( c(1,0,0,0), 2, 2 ), # var(y) (two terms)
matrix( c(0,1,1,0), 2, 2 ), # cov(x,y)
matrix( c(0,0,0,1), 2, 2 ) ) # var(x)
U0 <- matrix( 0, nrow=2*n,ncol=2*n )
Ulist <- list( U0, U0, U0, U0 )
M <- length(Hlist)
for (mm in 1:M){ # mm <- 1
for (nn in 1:n){ # nn <- 0
Ulist[[ mm ]][ 2*(nn-1) + 1:2, 2*(nn-1) + 1:2 ] <- Hlist[[ mm ]]
}
}
Z_list <- as.list(1:G)
for (gg in 1:G){
Z_list[[gg]] <- Ulist
}
#--- define index vectors
Z_index <- array( 0, dim=c(G, 4, 3 ) )
K0 <- matrix( 0, nrow=4, ncol=3 )
colnames(K0) <- names(theta)
# Var(y)=beta_t^2 * var_x + var_e (matrices withn indices 1 and 2)
K0[ 1, c("beta_t","var_x") ] <- c(2,1) # beta_t^2 * var_x
K0[ 2, c("var_e") ] <- c(1) # var_e
# Cov(y,x)=beta_t * var_x
K0[ 3, c("beta_t","var_x")] <- c(1,1)
# Var(x)=var_x
K0[ 4, c("var_x") ] <- c(1)
for (gg in 1:G){
Z_index[gg,,] <- K0
}
#*** estimate model with mlnormal
mod1a <- LAM::mlnormal( y=Y, X=X, id=id, Z_list=Z_list, Z_index=Z_index,
beta=beta, theta=theta, method="REML", vcov=FALSE )
summary(mod1a)
#*** estimate linear regression with stats::lm
mod1b <- stats::lm( y ~ x )
summary(mod1b)
#--------------------------------------------------------------
# Model 2: Latent covariate model
#--------------------------------------------------------------
#** initial parameters
theta <- c( 0.12, .6, .5, 0, .2, .2 )
names(theta) <- c( "beta_w", "var_xw", "var_ew",
"beta_b", "var_xb", "var_eb")
#--- define design matrices | list Z_list
Hlist <- list( matrix( c(1,0,0,0), 2, 2 ), # var(y)
matrix( c(1,0,0,0), 2, 2 ), # var(y) (two terms)
matrix( c(0,1,1,0), 2, 2 ), # cov(x,y)
matrix( c(0,0,0,1), 2, 2 ) ) # var(x)
U0 <- matrix( 0, nrow=2*n,ncol=2*n )
Ulist <- list( U0, U0, U0, U0, # within structure
U0, U0, U0, U0 ) # between structure
M <- length(Hlist)
#*** within structure
design_within <- diag(n) # design matrix within structure
for (mm in 1:M){ # mm <- 1
Ulist[[ mm ]] <- base::kronecker( design_within, Hlist[[mm]] )
}
#*** between structure
design_between <- matrix(1, nrow=n, ncol=n)
# matrix of ones corresponding to group size
for (mm in 1:M){ # mm <- 1
Ulist[[ mm + M ]] <- base::kronecker( design_between, Hlist[[ mm ]] )
}
Z_list <- as.list(1:G)
for (gg in 1:G){
Z_list[[gg]] <- Ulist
}
#--- define index vectors Z_index
Z_index <- array( 0, dim=c(G, 8, 6 ) )
K0 <- matrix( 0, nrow=8, ncol=6 )
colnames(K0) <- names(theta)
# Var(y)=beta^2 * var_x + var_e (matrices withn indices 1 and 2)
K0[ 1, c("beta_w","var_xw") ] <- c(2,1) # beta_t^2 * var_x
K0[ 2, c("var_ew") ] <- c(1) # var_e
K0[ 5, c("beta_b","var_xb") ] <- c(2,1) # beta_t^2 * var_x
K0[ 6, c("var_eb") ] <- c(1) # var_e
# Cov(y,x)=beta * var_x
K0[ 3, c("beta_w","var_xw")] <- c(1,1)
K0[ 7, c("beta_b","var_xb")] <- c(1,1)
# Var(x)=var_x
K0[ 4, c("var_xw") ] <- c(1)
K0[ 8, c("var_xb") ] <- c(1)
for (gg in 1:G){
Z_index[gg,,] <- K0
}
#--- estimate model with mlnormal
mod2a <- LAM::mlnormal( y=Y, X=X, id=id, Z_list=Z_list, Z_index=Z_index,
beta=beta, theta=theta, method="ML" )
summary(mod2a)
#############################################################################
# EXAMPLE 3: Simple linear regression, single level
#############################################################################
#--------------------------------------------------------------
# Simulate data
#--------------------------------------------------------------
set.seed(875)
N <- 300
x <- stats::rnorm( N, sd=1.3 )
y <- .4 + .7 * x + stats::rnorm( N, sd=.5 )
dat <- data.frame( x, y )
#--------------------------------------------------------------
# Model 1: Linear regression modelled with residual covariance structure
#--------------------------------------------------------------
# matrix of predictros
X <- cbind( 1, x )
# list with design matrices
Z <- as.list(1:N)
for (nn in 1:N){
Z[[nn]] <- as.list( 1 )
Z[[nn]][[1]] <- matrix( 1, nrow=1, ncol=1 ) # residual variance
}
#* loading matrix
Z_index <- array( 0, dim=c(N,1,1) )
Z_index[ 1:N, 1, 1] <- 2 # parametrize residual standard deviation
#** starting values and parameter names
beta <- c( 0, 0 )
names(beta) <- c("int", "x")
theta <- c(1)
names(theta) <- c("sig2" )
# id vector
id <- 1:N
#** mlnormal function
mod1a <- LAM::mlnormal( y=y, X=X, id=id, Z_list=Z, Z_index=Z_index,
beta=beta, theta=theta, method="ML" )
summary(mod1a)
# estimate linear regression with stats::lm
mod1b <- stats::lm( y ~ x )
summary(mod1b)
#--------------------------------------------------------------
# Model 2: Linear regression modelled with bivariate covariance structure
#--------------------------------------------------------------
#** define design matrix referring to mean structure
X <- matrix( 0, nrow=2*N, ncol=2 )
X[ seq(1,2*N,2), 1 ] <- X[ seq(2,2*N,2), 2 ] <- 1
#** create outcome vector
y1 <- dat[ cbind( rep(1:N, each=2), rep(1:2, N ) ) ]
#** list with design matrices
Z <- as.list(1:N)
Z0 <- 0*matrix( 0, nrow=2,ncol=2)
ZXY <- ZY <- ZX <- Z0
# design matrix Var(X)
ZX[1,1] <- 1
# design matrix Var(Y)
ZY[2,2] <- 1
# design matrix covariance
ZXY[1,2] <- ZXY[2,1] <- 1
# Var(X)=sigx^2
# Cov(X,Y)=beta * sigx^2
# Var(Y)=beta^2 * sigx^2 + sige^2
Z_list0 <- list( ZY, ZY, ZXY, ZX )
for (nn in 1:N){
Z[[nn]] <- Z_list0
}
#* parameter list containing the powers of parameters
theta <- c(1,0.3,1)
names(theta) <- c("sigx", "beta", "sige" )
Z_index <- array( 0, dim=c(N,4,3) )
for (nn in 1:N){
# Var(X)
Z_index[nn, 4, ] <- c(2,0,0)
# Cov(X,Y)
Z_index[nn, 3, ] <- c(2,1,0)
# Var(Y)
Z_index[nn,1,] <- c(2,2,0)
Z_index[nn,2,] <- c(0,0,2)
}
#** starting values and parameter names
beta <- c( 0, 0 )
names(beta) <- c("Mx", "My")
# id vector
id <- rep( 1:N, each=2 )
#** mlnormal function
mod2a <- LAM::mlnormal( y=y1, X=X, id=id, Z_list=Z, Z_index=Z_index,
beta=beta, theta=theta, method="ML" )
summary(mod2a)
#--------------------------------------------------------------
# Model 3: Bivariate normal distribution in (sigma_X, sigma_Y, sigma_XY) parameters
#--------------------------------------------------------------
# list with design matrices
Z <- as.list(1:N)
Z0 <- 0*matrix( 0, nrow=2,ncol=2)
ZXY <- ZY <- ZX <- Z0
# design matrix Var(X)
ZX[1,1] <- 1
# design matrix Var(Y)
ZY[2,2] <- 1
# design matrix covariance
ZXY[1,2] <- ZXY[2,1] <- 1
Z_list0 <- list( ZX, ZY, ZXY )
for (nn in 1:N){
Z[[nn]] <- Z_list0
}
#* parameter list
theta <- c(1,1,.3)
names(theta) <- c("sigx", "sigy", "sigxy" )
Z_index <- array( 0, dim=c(N,3,3) )
for (nn in 1:N){
# Var(X)
Z_index[nn, 1, ] <- c(2,0,0)
# Var(Y)
Z_index[nn, 2, ] <- c(0,2,0)
# Cov(X,Y)
Z_index[nn, 3, ] <- c(0,0,1)
}
#** starting values and parameter names
beta <- c( 0, 0 )
names(beta) <- c("Mx", "My")
#** mlnormal function
mod3a <- LAM::mlnormal( y=y1, X=X, id=id, Z_list=Z, Z_index=Z_index,
beta=beta, theta=theta, method="ML" )
summary(mod3a)
#--------------------------------------------------------------
# Model 4: Bivariate normal distribution in parameters of Cholesky decomposition
#--------------------------------------------------------------
# list with design matrices
Z <- as.list(1:N)
Z0 <- 0*matrix( 0, nrow=2,ncol=2)
ZXY <- ZY <- ZX <- Z0
# design matrix Var(X)
ZX[1,1] <- 1
# design matrix Var(Y)
ZY[2,2] <- 1
# design matrix covariance
ZXY[1,2] <- ZXY[2,1] <- 1
Z_list0 <- list( ZX, ZXY, ZY, ZY )
for (nn in 1:N){
Z[[nn]] <- Z_list0
}
#* parameter list containing the powers of parameters
theta <- c(1,0.3,1)
names(theta) <- c("L11", "L21", "L22" )
Z_index <- array( 0, dim=c(N,4,3) )
for (nn in 1:N){
Z_index[nn,1,] <- c(2,0,0)
Z_index[nn,2,] <- c(1,1,0)
Z_index[nn,3,] <- c(0,2,0)
Z_index[nn,4,] <- c(0,0,2)
}
#** starting values and parameter names
beta <- c( 0, 0 )
names(beta) <- c("Mx", "My")
# id vector
id <- rep( 1:N, each=2 )
#** mlnormal function
mod4a <- LAM::mlnormal( y=y1, X=X, id=id, Z_list=Z, Z_index=Z_index,
beta=beta, theta=theta, method="ML" )
# parameter with lower diagonal entries of Cholesky matrix
mod4a$theta
# fill-in parameters for Cholesky matrix
L <- matrix(0,2,2)
L[ ! upper.tri(L) ] <- mod4a$theta
#** reconstruct covariance matrix
L
stats::cov.wt(dat, method="ML")$cov
}