Composite Conditional Maximum Likelihood Estimation for the Partial Credit Model with a Design Matrix for Item Parameters
immer_ccml.Rd
Estimates the partial credit model with a design matrix for item parameters with composite conditional maximum likelihood estimation. The estimation uses pairs of items \(X_i\) and \(X_j\) and considers conditional likelihoods \(P(X_i=k, X_j=h | \theta) / P( X_i + X_j=k+h| \theta )\). By using this strategy, the trait \(\theta\) cancels out (like in conditional maximum likelihood estimation). The proposed strategy is a generalization of the Zwinderman (1995) composite conditional maximum likelihood approach of the Rasch model to the partial credit model. See Varin, Reid and Firth (2011) for a general introduction to composite conditional maximum likelihood estimation.
Arguments
- dat
Data frame with polytomous item responses \(0,1,\ldots, K\)
- weights
Optional vector of sampling weights
- irtmodel
Model string for specifying the item response model
- A
Design matrix (items \(\times\) categories \(\times\) basis parameters). Entries for categories are for \(1,\ldots,K\)
- b_fixed
Matrix with fixed \(b\) parameters
- control
Control arguments for optimization function
stats::nlminb
- object
Object of class
immer_ccml
- digits
Number of digits after decimal to print
- file
Name of a file in which the output should be sunk
- ...
Further arguments to be passed.
Details
The function estimates the partial credit model as
\(P(X_i=h | \theta ) \propto \exp( h \theta - b_{ih} )\) with
\(b_{ih}=\sum_l a_{ihl} \xi_l\) where the values \(a_{ihl}\)
are included in the design matrix A
and \(\xi_l\) denotes
basis item parameters.
Value
List with following entries (selection)
- coef
Item parameters
- vcov
Covariance matrix for item parameters
- se
Standard errors for item parameters
- nlminb_result
Output from optimization with
stats::nlminb
- suff_stat
Used sufficient statistics
- ic
Information criteria
References
Varin, C., Reid, N., & Firth, D. (2011). An overview of composite likelihood methods. Statistica Sinica, 21, 5-42.
Zwinderman, A. H. (1995). Pairwise parameter estimation in Rasch models. Applied Psychological Measurement, 19(4), 369-375.
See also
See sirt::rasch.pairwise.itemcluster
of an implementation of the composite conditional maximum likelihood approach for the
Rasch model.
Examples
#############################################################################
# EXAMPLE 1: Partial credit model with CCML estimation
#############################################################################
library(TAM)
data(data.gpcm, package="TAM")
dat <- data.gpcm
#-- initial MML estimation in TAM to create a design matrix
mod1a <- TAM::tam.mml(dat, irtmodel="PCM2")
summary(mod1a)
#* define design matrix
A <- - mod1a$A[,-1,-1]
A <- A[,,-1]
str(A)
#-- estimate model
mod1b <- immer::immer_ccml( dat, A=A)
summary(mod1b)