Function reference
-
data.immer01adata.immer01bdata.immer02data.immer03data.immer04adata.immer04bdata.immer05data.immer06data.immer07data.immer08data.immer09data.immer10data.immer11data.immer12 - Some Example Datasets for the immer Package
-
data.ptam1data.ptam2data.ptam3data.ptam4data.ptam4longdata.ptam4wide - Example Datasets for Robitzsch and Steinfeld (2018)
-
immer-packageimmer - Item Response Models for Multiple Ratings
-
immer_agree2()summary(<immer_agree2>) - Agreement Statistics for 2 Raters
-
immer_ccml()summary(<immer_ccml>)coef(<immer_ccml>)vcov(<immer_ccml>) - Composite Conditional Maximum Likelihood Estimation for the Partial Credit Model with a Design Matrix for Item Parameters
-
immer_cml()summary(<immer_cml>)logLik(<immer_cml>)anova(<immer_cml>)coef(<immer_cml>)vcov(<immer_cml>) - Conditional Maximum Likelihood Estimation for the Linear Logistic Partial Credit Model
-
immer_FACETS() - Wrapper to FACDOS
-
immer_hrm()summary(<immer_hrm>)plot(<immer_hrm>)logLik(<immer_hrm>)anova(<immer_hrm>)IRT.likelihood(<immer_hrm>)IRT.posterior(<immer_hrm>) - Hierarchical Rater Model (Patz et al., 2002)
-
immer_hrm_simulate() - Simulating the Hierarchical Rater Model (Patz et al., 2002)
-
immer_install() - Support for the installation of the DOS-version from FACETS
-
immer_jml()summary(<immer_jml>)logLik(<immer_jml>)IRT.likelihood(<immer_jml>) - Joint Maximum Likelihood Estimation for the Partial Credit Model with a Design Matrix for Item Parameters and \(\varepsilon\)-Adjustment Bias Correction
-
immer_latent_regression()summary(<immer_latent_regression>)coef(<immer_latent_regression>)vcov(<immer_latent_regression>)logLik(<immer_latent_regression>)anova(<immer_latent_regression>) - Unidimensional Latent Regression
-
immer_opcat() - Estimation of Integer Item Discriminations
-
immer_proc_data()immer_create_design_matrix_formula() - Processing Datasets and Creating Design Matrices for Rating Data
-
immer_reshape_wideformat() - Creating a Rating Dataset in Wide Format
-
immer_unique_patterns() - Extracts Unique Item Response Patterns
-
lc2_agreement()summary(<lc2_agreement>)logLik(<lc2_agreement>)anova(<lc2_agreement>) - A Latent Class Model for Agreement of Two Raters
-
probs2logits()logits2probs() - Conversion of Probabilities into Logits