Estimation of Integer Item Discriminations
immer_opcat.Rd
Estimates integer item discriminations like in the one-parameter logistic model (OPLM; Verhelst & Glas, 1995). See Verhelst, Verstralen and Eggen (1991) for computational details.
Arguments
- a
Vector of estimated item discriminations
- hmean
Prespecified harmonic mean
- min
Minimum integer item discrimination
- max
Maximum integer item discrimination
- maxiter
Maximum number of iterations
References
Verhelst, N. D. &, Glas, C. A. W. (1995). The one-parameter logistic model. In G. H. Fischer & I. W. Molenaar (Eds.). Rasch Models (pp. 215--238). New York: Springer.
Verhelst, N. D., Verstralen, H. H. F. M., & Eggen, T. H. J. M. (1991). Finding starting values for the item parameters and suitable discrimination indices in the one-parameter logistic model. CITO Measurement and Research Department Reports, 91-10.
See also
See immer_cml
for using immer_opcat
to estimate
the one-parameter logistic model.
Examples
#############################################################################
# EXAMPLE 1: Estimating integer item discriminations for dichotomous data
#############################################################################
library(sirt)
data(data.read, package="sirt")
dat <- data.read
I <- ncol(dat)
#--- estimate 2PL model
mod <- sirt::rasch.mml2( dat, est.a=1:I, mmliter=30)
summary(mod)
a <- mod$item$a # extract (non-integer) item discriminations
#--- estimate integer item discriminations under different conditions
a1 <- immer::immer_opcat( a, hmean=3, min=1, max=6 )
table(a1)
a2 <- immer::immer_opcat( a, hmean=2, min=1, max=3 )
a3 <- immer::immer_opcat( a, hmean=1.5, min=1, max=2 )
#--- compare results
cbind( a, a1, a2, a3)