Skip to contents

Estimates integer item discriminations like in the one-parameter logistic model (OPLM; Verhelst & Glas, 1995). See Verhelst, Verstralen and Eggen (1991) for computational details.

Usage

immer_opcat(a, hmean, min=1, max=10, maxiter=200)

Arguments

a

Vector of estimated item discriminations

hmean

Prespecified harmonic mean

min

Minimum integer item discrimination

max

Maximum integer item discrimination

maxiter

Maximum number of iterations

Value

Vector containing integer item discriminations

References

Verhelst, N. D. &, Glas, C. A. W. (1995). The one-parameter logistic model. In G. H. Fischer & I. W. Molenaar (Eds.). Rasch Models (pp. 215--238). New York: Springer.

Verhelst, N. D., Verstralen, H. H. F. M., & Eggen, T. H. J. M. (1991). Finding starting values for the item parameters and suitable discrimination indices in the one-parameter logistic model. CITO Measurement and Research Department Reports, 91-10.

See also

See immer_cml for using immer_opcat to estimate the one-parameter logistic model.

Examples

#############################################################################
# EXAMPLE 1: Estimating integer item discriminations for dichotomous data
#############################################################################

library(sirt)
data(data.read, package="sirt")
dat <- data.read
I <- ncol(dat)

#--- estimate 2PL model
mod <- sirt::rasch.mml2( dat, est.a=1:I, mmliter=30)
summary(mod)
a <- mod$item$a        # extract (non-integer) item discriminations

#--- estimate integer item discriminations under different conditions
a1 <- immer::immer_opcat( a, hmean=3, min=1, max=6 )
table(a1)
a2 <- immer::immer_opcat( a, hmean=2, min=1, max=3 )
a3 <- immer::immer_opcat( a, hmean=1.5, min=1, max=2 )
#--- compare results
cbind( a, a1, a2, a3)