NestedImputationList.RdThe function NestedImputationList takes a list of lists of datasets
and converts this into an object of class NestedImputationList.
Statistical models can be estimated with the function
with.NestedImputationList.
The mitools::MIcombine
method can be used for objects of class
NestedImputationResultList which are the output of
with.NestedImputationList.
List of lists of datasets which are created by nested multiple imputation.
Object of class NestedImputationResultsList
Object of class NestedImputationResultsList
Further arguments to be passed.
Function NestedImputationList: Object of class NestedImputationList.
Function MIcombine.NestedImputationList:
Object of class mipo.nmi.
if (FALSE) {
#############################################################################
# EXAMPLE 1: Nested multiple imputation and conversion into an object of class
# NestedImputationList
#############################################################################
library(BIFIEsurvey)
data(data.timss2, package="BIFIEsurvey" )
datlist <- data.timss2
# remove first four variables
M <- length(datlist)
for (ll in 1:M){
datlist[[ll]] <- datlist[[ll]][, -c(1:4) ]
}
# nested multiple imputation using mice
imp1 <- miceadds::mice.nmi( datlist, m=3, maxit=2 )
summary(imp1)
# create object of class NestedImputationList
datlist1 <- miceadds::mids2datlist( imp1 )
datlist1 <- miceadds::NestedImputationList( datlist1 )
# estimate linear model using with
res1 <- with( datlist1, stats::lm( ASMMAT ~ female + migrant ) )
# pool results
mres1 <- mitools::MIcombine( res1 )
summary(mres1)
coef(mres1)
vcov(mres1)
}