lmer_vcov.Rd
The function lmer_vcov
conducts statistical inference for
fixed coefficients and standard deviations
and correlations of random effects structure of models fitted in the
lme4 package.
The function lmer_pool
applies the Rubin formula for inference
for fitted lme4 models for multiply imputed datasets.
lmer_vcov(object, level=.95, use_reml=FALSE, ...)
# S3 method for lmer_vcov
summary(object, digits=4, file=NULL, ...)
# S3 method for lmer_vcov
coef(object, ...)
# S3 method for lmer_vcov
vcov(object, ...)
lmer_vcov2(object, level=.95, ...)
lmer_pool( models, level=.95, ...)
# S3 method for lmer_pool
summary(object, digits=4, file=NULL, ...)
lmer_pool2( models, level=.95, ...)
Fitted object in lme4
Confidence level
Logical indicating whether REML estimates should be used for variance components (if provided)
Number of digits used for rounding in summary
Optional file name for sinking output
List of models fitted in lme4 for a multiply imputed dataset
Further arguments to be passed
List with several entries:
Parameter summary
Estimated parameters
Covariance matrix of estimates
Further values
if (FALSE) {
#############################################################################
# EXAMPLE 1: Single model fitted in lme4
#############################################################################
library(lme4)
data(data.ma01, package="miceadds")
dat <- na.omit(data.ma01)
#* fit multilevel model
formula <- math ~ hisei + miceadds::gm( books, idschool ) + ( 1 + books | idschool )
mod1 <- lme4::lmer( formula, data=dat, REML=FALSE)
summary(mod1)
#* statistical inference
res1 <- miceadds::lmer_vcov( mod1 )
summary(res1)
coef(res1)
vcov(res1)
#############################################################################
# EXAMPLE 2: lme4 model for multiply imputed dataset
#############################################################################
library(lme4)
data(data.ma02, package="miceadds")
datlist <- miceadds::datlist_create(data.ma02)
#** fit lme4 model for all imputed datasets
formula <- math ~ hisei + miceadds::gm( books, idschool ) + ( 1 | idschool )
models <- list()
M <- length(datlist)
for (mm in 1:M){
models[[mm]] <- lme4::lmer( formula, data=datlist[[mm]], REML=FALSE)
}
#** statistical inference
res1 <- miceadds::lmer_pool(models)
summary(res1)
}