Nonparametric Estimation of Conditional Covariances of Item Pairs
ccov.np.RdThis function estimates conditional covariances of itempairs
(Stout, Habing, Douglas & Kim, 1996; Zhang & Stout,
1999a). The function is used for the estimation of the DETECT index.
The ccov.np function has the (default) option to smooth item response
functions (argument smooth) in the computation of conditional covariances
(Douglas, Kim, Habing, & Gao, 1998).
Usage
ccov.np(data, score, bwscale=1.1, thetagrid=seq(-3, 3, len=200),
progress=TRUE, scale_score=TRUE, adjust_thetagrid=TRUE, smooth=TRUE,
use_sum_score=FALSE, bias_corr=TRUE)Arguments
- data
An \(N \times I\) data frame of dichotomous responses. Missing responses are allowed.
- score
An ability estimate, e.g. the WLE
- bwscale
Bandwidth factor for calculation of conditional covariance. The bandwidth used in the estimation is
bwscaletimes \(N^{-1/5}\).- thetagrid
A vector which contains theta values where conditional covariances are evaluated.
- progress
Display progress?
- scale_score
Logical indicating whether
scoreshould be z standardized in advance of the calculation of conditional covariances- adjust_thetagrid
Logical indicating whether
thetagridshould be adjusted if observed values inscoreare outside ofthetagrid.- smooth
Logical indicating whether smoothing should be applied for conditional covariance estimation
- use_sum_score
Logical indicating whether sum score should be used. With this option, the bias corrected conditional covariance of Zhang and Stout (1999) is used.
- bias_corr
Logical indicating whether bias correction (Zhang & Stout, 1999) should be utilized if
use_sum_score=TRUE.
References
Douglas, J., Kim, H. R., Habing, B., & Gao, F. (1998). Investigating local dependence with conditional covariance functions. Journal of Educational and Behavioral Statistics, 23(2), 129-151. doi:10.3102/10769986023002129
Stout, W., Habing, B., Douglas, J., & Kim, H. R. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20(4), 331-354. doi:10.1177/014662169602000403
Zhang, J., & Stout, W. (1999). Conditional covariance structure of generalized compensatory multidimensional items. Psychometrika, 64(2), 129-152. doi:10.1007/BF02294532
Note
This function is used in conf.detect and expl.detect.
Examples
if (FALSE) {
#############################################################################
# EXAMPLE 1: data.read | different settings for computing conditional covariance
#############################################################################
data(data.read, package="sirt")
dat <- data.read
#* fit Rasch model
mod <- sirt::rasch.mml2(dat)
score <- sirt::wle.rasch(dat=dat, b=mod$item$b)$theta
#* ccov with smoothing
cmod1 <- sirt::ccov.np(data=dat, score=score, bwscale=1.1)
#* ccov without smoothing
cmod2 <- sirt::ccov.np(data=dat, score=score, smooth=FALSE)
#- compare results
100*cbind( cmod1$ccov.table[1:6, "ccov"], cmod2$ccov.table[1:6, "ccov"])
}