Nonparametric Estimation of Conditional Covariances of Item Pairs
ccov.np.Rd
This function estimates conditional covariances of itempairs
(Stout, Habing, Douglas & Kim, 1996; Zhang & Stout,
1999a). The function is used for the estimation of the DETECT index.
The ccov.np
function has the (default) option to smooth item response
functions (argument smooth
) in the computation of conditional covariances
(Douglas, Kim, Habing, & Gao, 1998).
Usage
ccov.np(data, score, bwscale=1.1, thetagrid=seq(-3, 3, len=200),
progress=TRUE, scale_score=TRUE, adjust_thetagrid=TRUE, smooth=TRUE,
use_sum_score=FALSE, bias_corr=TRUE)
Arguments
- data
An \(N \times I\) data frame of dichotomous responses. Missing responses are allowed.
- score
An ability estimate, e.g. the WLE
- bwscale
Bandwidth factor for calculation of conditional covariance. The bandwidth used in the estimation is
bwscale
times \(N^{-1/5}\).- thetagrid
A vector which contains theta values where conditional covariances are evaluated.
- progress
Display progress?
- scale_score
Logical indicating whether
score
should be z standardized in advance of the calculation of conditional covariances- adjust_thetagrid
Logical indicating whether
thetagrid
should be adjusted if observed values inscore
are outside ofthetagrid
.- smooth
Logical indicating whether smoothing should be applied for conditional covariance estimation
- use_sum_score
Logical indicating whether sum score should be used. With this option, the bias corrected conditional covariance of Zhang and Stout (1999) is used.
- bias_corr
Logical indicating whether bias correction (Zhang & Stout, 1999) should be utilized if
use_sum_score=TRUE
.
References
Douglas, J., Kim, H. R., Habing, B., & Gao, F. (1998). Investigating local dependence with conditional covariance functions. Journal of Educational and Behavioral Statistics, 23(2), 129-151. doi:10.3102/10769986023002129
Stout, W., Habing, B., Douglas, J., & Kim, H. R. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20(4), 331-354. doi:10.1177/014662169602000403
Zhang, J., & Stout, W. (1999). Conditional covariance structure of generalized compensatory multidimensional items. Psychometrika, 64(2), 129-152. doi:10.1007/BF02294532
Note
This function is used in conf.detect
and expl.detect
.
Examples
if (FALSE) {
#############################################################################
# EXAMPLE 1: data.read | different settings for computing conditional covariance
#############################################################################
data(data.read, package="sirt")
dat <- data.read
#* fit Rasch model
mod <- sirt::rasch.mml2(dat)
score <- sirt::wle.rasch(dat=dat, b=mod$item$b)$theta
#* ccov with smoothing
cmod1 <- sirt::ccov.np(data=dat, score=score, bwscale=1.1)
#* ccov without smoothing
cmod2 <- sirt::ccov.np(data=dat, score=score, smooth=FALSE)
#- compare results
100*cbind( cmod1$ccov.table[1:6, "ccov"], cmod2$ccov.table[1:6, "ccov"])
}