Haebara Linking of the 2PL Model for Multiple Studies
linking.haebara.Rd
The function linking.haebara
is a generalization of Haebara linking
of the 2PL model to multiple groups (or multiple studies; see Battauz, 2017,
for a similar approach). The optimization estimates transformation parameters for
means and standard deviations of the groups and joint item parameters.
The function allows two different distance functions dist="L2"
and
dist="L1"
where the latter is a robustified version of
Haebara linking (see Details; He, Cui, & Osterlind, 2015; He & Cui, 2020;
Hu, Rogers, & Vukmirovic, 2008).
Arguments
- itempars
A data frame with four or five columns. The first four columns contain in the order: study name, item name, \(a\) parameter, \(b\) parameter. The fifth column is an optional weight for every item and every study. See
linking.haberman
for a function which uses the same argument.- dist
Distance function. Options are
"L2"
for squared loss and"L1"
for absolute value loss.- theta
Grid of theta points for 2PL item response functions
- optimizer
Name of the optimizer chosen for alignment. Options are
"optim"
(usingstats::optim
) or"nlminb"
(usingstats::nlminb
).- center
Logical indicating whether means and standard deviations should be centered after estimation
- eps
Small value for smooth approximation of the absolute value function
- par_init
Optional vector of initial parameter estimates
- use_rcpp
Logical indicating whether Rcpp is used for computation
- pow
Power for method
dist="Lq"
- use_der
Logical indicating whether analytical derivative should be used
- object
Object of class
linking.haabara
.- digits
Number of digits after decimals for rounding in
summary
.- file
Optional file name if
summary
should be sunk into a file.- ...
Further arguments to be passed
Details
For \(t=1,\ldots,T\) studies, item difficulties \(b_{it}\) and item slopes \(a_{it}\) are available. The 2PL item response functions are given by $$ logit P(X_{pi}=1| \theta_p )=a_i ( \theta_p - b_i ) $$
Haebara linking compares the observed item response functions \(P_{it}\) based on the equation for the logits \(a_{it}(\theta - b_{it})\) and the expected item response functions \(P_{it}^\ast\) based on the equation for the logits \(a_i^\ast \sigma_t ( \theta - ( b_i - \mu_t)/\sigma_t )\) where the joint item parameters \(a_i\) and \(b_i\) and means \(\mu_t\) and standard deviations \(\sigma_t\) are estimated.
Two loss functions are implemented. The quadratic loss of Haebara linking
(dist="L2"
) minimizes
$$f_{opt, L2}=\sum_t \sum_i \int ( P_{it} (\theta ) - P_{it}^\ast (\theta ) )^2 w(\theta)$$
was originally proposed by Haebara. A robustified version (dist="L1"
)
uses the optimization function (He et al., 2015)
$$f_{opt, L1}=\sum_t \sum_i \int | P_{it} (\theta ) - P_{it}^\ast (\theta ) | w(\theta)$$
As a further generalization, the follwing distance function (dist="Lp"
)
can be minimized:
$$f_{opt, Lp}=\sum_t \sum_i \int | P_{it} (\theta ) - P_{it}^\ast (\theta ) |^p w(\theta)$$
Value
A list with following entries
- pars
Estimated means and standard deviations (transformation parameters)
- item
Estimated joint item parameters
- a.orig
Original \(a_{it}\) parameters
- b.orig
Original \(b_{it}\) parameters
- a.resid
Residual \(a_{it}\) parameters (DIF parameters)
- b.resid
Residual \(b_{it}\) parameters (DIF parameters)
- res_optim
Value of optimization routine
References
Battauz, M. (2017). Multiple equating of separate IRT calibrations. Psychometrika, 82, 610-636. doi:10.1007/s11336-016-9517-x
He, Y., Cui, Z., & Osterlind, S. J. (2015). New robust scale transformation methods in the presence of outlying common items. Applied Psychological Measurement, 39(8), 613-626. doi:10.1177/0146621615587003
He, Y., & Cui, Z. (2020). Evaluating robust scale transformation methods with multiple outlying common items under IRT true score equating. Applied Psychological Measurement, 44(4), 296-310. doi:10.1177/0146621619886050
Hu, H., Rogers, W. T., & Vukmirovic, Z. (2008). Investigation of IRT-based equating methods in the presence of outlier common items. Applied Psychological Measurement, 32(4), 311-333. doi:10.1177/0146621606292215
See also
See invariance.alignment
and linking.haberman
for alternative linking methods in the sirt package. See also
TAM::tam.linking
in the TAM package for more linking functionality
and the R packages plink, equateIRT, equateMultiple and
SNSequate.
Examples
if (FALSE) {
#############################################################################
# EXAMPLE 1: Robust linking methods in the presence of outliers
#############################################################################
#** simulate data
I <- 10
a <- seq(.9, 1.1, len=I)
b <- seq(-2, 2, len=I)
#- define item parameters
item_names <- paste0("I",100+1:I)
# th=SIG*TH+MU=> logit(p)=a*(SIG*TH+MU-b)=a*SIG*(TH-(-MU)/SIG-b/SIG)
d1 <- data.frame( study="S1", item=item_names, a=a, b=b )
mu <- .5; sigma <- 1.3
d2 <- data.frame( study="S2", item=item_names, a=a*sigma, b=(b-mu)/sigma )
mu <- -.3; sigma <- .7
d3 <- data.frame( study="S3", item=item_names, a=a*sigma, b=(b-mu)/sigma )
#- define DIF effect
# dif <- 0 # no DIF effects
dif <- 1
d2[4,"a"] <- d2[4,"a"] * (1-.8*dif)
d3[5,"b"] <- d3[5,"b"] - 2*dif
itempars <- rbind(d1, d2, d3)
#* Haebara linking non-robust
mod1 <- sirt::linking.haebara( itempars, dist="L2", control=list(trace=2) )
summary(mod1)
#* Haebara linking robust
mod2 <- sirt::linking.haebara( itempars, dist="L1", control=list(trace=2) )
summary(mod2)
#* using initial parameter estimates
par_init <- mod1$res_optim$par
mod2b <- sirt::linking.haebara( itempars, dist="L1", par_init=par_init)
summary(mod2b)
#* power p=.25
mod2c <- sirt::linking.haebara( itempars, dist="Lp", pow=.25, par_init=par_init)
summary(mod2c)
#* Haberman linking non-robust
mod3 <- sirt::linking.haberman(itempars)
summary(mod3)
#* Haberman linking robust
mod4 <- sirt::linking.haberman(itempars, estimation="BSQ", a_trim=.25, b_trim=.5)
summary(mod4)
#* compare transformation parameters (means and standard deviations)
mod1$pars
mod2$pars
mod3$transf.personpars
mod4$transf.personpars
}