Skip to contents

This function does the linking of several studies which are calibrated using the 2PL or the generalized item response model according to Haberman (2009). This method is a generalization of log-mean-mean linking from one study to several studies. The default a_log=TRUE logarithmizes item slopes for linking while otherwise an additive regression model is assumed for the original item loadings (see Details; Battauz, 2017)

Usage

linking.haberman(itempars, personpars, estimation="OLS", a_trim=Inf, b_trim=Inf,
    lts_prop=.5, a_log=TRUE, conv=1e-05, maxiter=1000, progress=TRUE,
    adjust_main_effects=TRUE, vcov=TRUE)

# S3 method for linking.haberman
summary(object, digits=3, file=NULL, ...)

linking.haberman.lq(itempars, pow=2, eps=1e-3, a_log=TRUE, use_nu=FALSE,
      est_pow=FALSE, lower_pow=.1, upper_pow=3, method="joint",
      le=FALSE, vcov_list=NULL)

# S3 method for linking.haberman.lq
summary(object, digits=3, file=NULL, ...)

## prepare 'itempars' argument for linking.haberman()
linking_haberman_itempars_prepare(b, a=NULL, wgt=NULL)

## conversion of different parameterizations of item parameters
linking_haberman_itempars_convert(itempars=NULL, lambda=NULL, nu=NULL, a=NULL, b=NULL)

## L0 polish precedure minimizing number of interactions in two-way table
L0_polish(x, tol, conv=0.01, maxiter=30, type=1, verbose=TRUE)

Arguments

itempars

A data frame with four or five columns. The first four columns contain in the order: study name, item name, \(a\) parameter, \(b\) parameter. The fifth column is an optional weight for every item and every study.

personpars

A list with vectors (e.g. EAPs or WLEs) or data frames (e.g. plausible values) containing person parameters which should be transformed. If a data frame in each list entry has se or SE (standard error) in a column name, then the corresponding column is only multiplied by \(A_t\). If a column is labeled as pid (person ID), then it is left untransformed.

estimation

Estimation method. Can be "OLS" (ordinary least squares), "BSQ" (bisquare weighted regression), "HUB" (regression using Huber weights), "MED" (median regression), "LTS" (trimmed least squares), "L1" (median polish), "L0" (minimizing number of interactions)

a_trim

Trimming parameter for item slopes \(a_{it}\) in bisquare regression (see Details).

b_trim

Trimming parameter for item slopes \(b_{it}\) in bisquare regression (see Details).

lts_prop

Proportion of retained observations in "LTS" regression estimation

a_log

Logical indicating whether item slopes should be logarithmized for linking.

conv

Convergence criterion.

maxiter

Maximum number of iterations.

progress

An optional logical indicating whether computational progress should be displayed.

adjust_main_effects

Logical indicating whether all elements in the vector of main effects should be simultaneously adjusted

vcov

Optional indicating whether covariance matrix for linking errors should be computed

pow

Power \(q\)

eps

Epsilon value used in differentiable approximating function

use_nu

Logical indicating whether item intercepts instead of item difficulties are used in linking

est_pow

Logical indicating whether power values should be estimated

lower_pow

Lower bound for estimated power

upper_pow

Upper bound for estimated power

method

Estimation method type: "joint" for joint estimation of distribution and item parameters, while "pw1" and "pw2" indicate pairwise estimation using no weights or weights for item frequencies

le

Logical indicating whether linking and standard errors should be computed

vcov_list

List of variance matrices of item parameters

lambda

Matrix containing item loadings

nu

Matrix containing item intercepts

object

Object of class linking.haberman.

digits

Number of digits after decimals for rounding in summary.

file

Optional file name if summary should be sunk into a file.

...

Further arguments to be passed

b

Matrix of item intercepts (items \(times\) studies)

a

Matrix of item slopes

wgt

Matrix of weights

x

Matrix

tol

Tolerance value

type

Can be 1 (using Tukey's median polish) or 2 (alternating median regression).

verbose

Logical indicating whether iteration progress should be displayed

Details

For \(t=1,\ldots,T\) studies, item difficulties \(b_{it}\) and item slopes \(a_{it}\) are available. For dichotomous responses, these parameters are defined by the 2PL response equation $$ logit P(X_{pi}=1| \theta_p )=a_i ( \theta_p - b_i ) $$ while for polytomous responses the generalized partial credit model holds $$ log \frac{P(X_{pi}=k| \theta_p )}{P(X_{pi}=k-1| \theta_p )} =a_i ( \theta_p - b_i + d_{ik} ) $$

The parameters \( \{ a_{it}, b_{it} \}\) of all items and studies are linearly transformed using equations \(a_{it} \approx a_i / A_t\) (if a_log=TRUE) or \(a_{it} \approx a_i + A_t\) (if a_log=FALSE) and \(b_{it} \cdot A_t \approx B_t + b_i\). For identification reasons, we define \(A_1=1\) and \(B_1\)=0.

The optimization function (which is a least squares criterion; see Haberman, 2009) seeks the transformation parameters \(A_t\) and \(B_t\) with an alternating least squares method (estimation="OLS"). Note that every item \(i\) and every study \(t\) can be weighted (specified in the fifth column of itempars). Alternatively, a robust regression method based on bisquare weighting (Fox, 2015) can be employed for linking using the argument estimation="BSQ". For example, in the case of item loadings, bisquare weighting is applied to residuals \(e_{it}=a_{it} - a_i - A_t \) (where logarithmized or non-logarithmized item loadings are employed) forming weights \(w_{it}=[ 1 - ( e_{it} / k )^2 ]^2\) for \(e_{it} <k\) and 0 for \(e_{it} \ge k\) where \(k\) is the trimming constant which can be estimated or fixed during estimation using arguments a_trim or b_trim. Items in studies with large residuals (i.e., presence differential item functioning) are effectively set to zero in the linking procedure. Alternatively, Huber weights (estimation="HUB") downweight large residuals by applying \(w_{it}=k / | e_{it} |\) for residuals \(|e_{it}|>k\). The method estimation="LTS" employs trimmed least squares where the proportion of data retained is specified in lts_prop with default set to .50.

The method estimation="MED" estimates item parameters and linking constants based on alternating median regression. A similar approach is the median polish procedure of Tukey (Tukey, 1977, p. 362ff.; Maronna, Martin & Yohai, 2006, p. 104; see also stats::medpolish) implemented in estimation="L1" which aims to minimize \(\sum_{i,t} | e_{it} |\). For a pre-specified tolerance value \(t\) (in a_trim or b_trim), the approach estimation="L0" minimizes the number of interactions (i.e., DIF effects) in the \(e_{it}\) effects. In more detail, it minimizes \(\sum_{i,t} \# \{ | e_{it} | > t \} \) which is computationally conducted by repeatedly applying the median polish procedure in which one cell is omitted (Davies, 2012; Terbeck & Davies, 1998).

Effect sizes of invariance are calculated as R-squared measures of explained item slopes and intercepts after linking in comparison to item parameters across groups (Asparouhov & Muthen, 2014).

The function \(linking.haberman.lq\) uses the loss function \(\rho(x)=|x|^q\). The originally proposed Haberman linking can be obtained with pow=2 (\(q=2\)). The powers can also be estimated (argument est_pow=TRUE).

Value

A list with following entries

transf.pars

Data frame with transformation parameters \(A_t\) and \(B_t\)

transf.personpars

Data frame with linear transformation functions for person parameters

joint.itempars

Estimated joint item parameters \(a_i\) and \(b_i\)

a.trans

Transformed \(a_{it}\) parameters

b.trans

Transformed \(b_{it}\) parameters

a.orig

Original \(a_{it}\) parameters

b.orig

Original \(b_{it}\) parameters

a.resid

Residual \(a_{it}\) parameters (DIF parameters)

b.resid

Residual \(b_{it}\) parameters (DIF parameters)

personpars

Transformed person parameters

es.invariance

Effect size measures of invariance, separately for item slopes and intercepts. In the rows, \(R^2\) and \(\sqrt{1-R^2}\) are reported.

es.robust

Effect size measures of invariance based on robust estimation (if used).

selitems

Indices of items which are present in more than one study.

vcov

List containing standard, linking and total errors

References

Asparouhov, T., & Muthen, B. (2014). Multiple-group factor analysis alignment. Structural Equation Modeling, 21(4), 1-14. doi:10.1080/10705511.2014.919210

Battauz, M. (2017). Multiple equating of separate IRT calibrations. Psychometrika, 82(3), 610-636. doi:10.1007/s11336-016-9517-x

Davies, P. L. (2012). Interactions in the analysis of variance. Journal of the American Statistical Association, 107(500), 1502-1509. doi:10.1080/01621459.2012.726895

Fox, J. (2015). Applied regression analysis and generalized linear models. Thousand Oaks: Sage.

Haberman, S. J. (2009). Linking parameter estimates derived from an item response model through separate calibrations. ETS Research Report ETS RR-09-40. Princeton, ETS. doi:10.1002/j.2333-8504.2009.tb02197.x

Kolen, M. J., & Brennan, R. L. (2014). Test equating, scaling, and linking: Methods and practices. New York: Springer. doi:10.1007/978-1-4939-0317-7

Magis, D., & De Boeck, P. (2012). A robust outlier approach to prevent type I error inflation in differential item functioning. Educational and Psychological Measurement, 72(2), 291-311. doi:10.1177/0013164411416975

Maronna, R. A., Martin, R. D., & Yohai, V. J. (2006). Robust statistics. West Sussex: Wiley. doi:10.1002/0470010940

Terbeck, W., & Davies, P. L. (1998). Interactions and outliers in the two-way analysis of variance. Annals of Statistics, 26(4), 1279-1305. doi: 10.1214/aos/1024691243

Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.

Weeks, J. P. (2010). plink: An R package for linking mixed-format tests using IRT-based methods. Journal of Statistical Software, 35(12), 1-33. doi:10.18637/jss.v035.i12

See also

See the plink package (Weeks, 2010) for a diversity of linking methods.

Mean-mean linking, Stocking-Lord and Haebara linking (see Kolen & Brennan, 2014, for an overview) in the generalized logistic item response model can be conducted with equating.rasch. See also TAM::tam.linking in the TAM package. Haebara linking and a robustified version of it can be found in linking.haebara.

The invariance alignment method employs an optimization function based on pairwise loss functions of item parameters (Asparouhov & Muthen, 2014), see invariance.alignment.

Examples

#############################################################################
# EXAMPLE 1: Item parameters data.pars1.rasch and data.pars1.2pl
#############################################################################

# Model 1: Linking three studies calibrated by the Rasch model
data(data.pars1.rasch)
mod1 <- sirt::linking.haberman( itempars=data.pars1.rasch )
summary(mod1)

# Model 1b: Linking these studies but weigh these studies by
#     proportion weights 3 : 0.5 : 1 (see below).
#     All weights are the same for each item but they could also
#     be item specific.
itempars <- data.pars1.rasch
itempars$wgt <- 1
itempars[ itempars$study=="study1","wgt"] <- 3
itempars[ itempars$study=="study2","wgt"] <- .5
mod1b <- sirt::linking.haberman( itempars=itempars )
summary(mod1b)

# Model 2: Linking three studies calibrated by the 2PL model
data(data.pars1.2pl)
mod2 <- sirt::linking.haberman( itempars=data.pars1.2pl )
summary(mod2)

# additive model instead of logarithmic model for item slopes
mod2b <- sirt::linking.haberman( itempars=data.pars1.2pl, a_log=FALSE )
summary(mod2b)

if (FALSE) {
#############################################################################
# EXAMPLE 2: Linking longitudinal data
#############################################################################
data(data.long)

#******
# Model 1: Scaling with the 1PL model

# scaling at T1
dat1 <- data.long[, grep("T1", colnames(data.long) ) ]
resT1 <- sirt::rasch.mml2( dat1 )
itempartable1 <- data.frame( "study"="T1", resT1$item[, c("item", "a", "b" ) ] )
# scaling at T2
dat2 <- data.long[, grep("T2", colnames(data.long) ) ]
resT2 <- sirt::rasch.mml2( dat2 )
summary(resT2)
itempartable2 <- data.frame( "study"="T2", resT2$item[, c("item", "a", "b" ) ] )
itempartable <- rbind( itempartable1, itempartable2 )
itempartable[,2] <- substring( itempartable[,2], 1, 2 )
# estimate linking parameters
mod1 <- sirt::linking.haberman( itempars=itempartable )

#******
# Model 2: Scaling with the 2PL model

# scaling at T1
dat1 <- data.long[, grep("T1", colnames(data.long) ) ]
resT1 <- sirt::rasch.mml2( dat1, est.a=1:6)
itempartable1 <- data.frame( "study"="T1", resT1$item[, c("item", "a", "b" ) ] )

# scaling at T2
dat2 <- data.long[, grep("T2", colnames(data.long) ) ]
resT2 <- sirt::rasch.mml2( dat2, est.a=1:6)
summary(resT2)
itempartable2 <- data.frame( "study"="T2", resT2$item[, c("item", "a", "b" ) ] )
itempartable <- rbind( itempartable1, itempartable2 )
itempartable[,2] <- substring( itempartable[,2], 1, 2 )
# estimate linking parameters
mod2 <- sirt::linking.haberman( itempars=itempartable )

#############################################################################
# EXAMPLE 3: 2 Studies - 1PL and 2PL linking
#############################################################################
set.seed(789)
I <- 20        # number of items
N <- 2000       # number of persons
# define item parameters
b <- seq( -1.5, 1.5, length=I )
# simulate data
dat1 <- sirt::sim.raschtype( stats::rnorm( N, mean=0,sd=1 ), b=b )
dat2 <- sirt::sim.raschtype( stats::rnorm( N, mean=0.5,sd=1.50 ), b=b )

#*** Model 1: 1PL
# 1PL Study 1
mod1 <- sirt::rasch.mml2( dat1, est.a=rep(1,I) )
summary(mod1)
# 1PL Study 2
mod2 <- sirt::rasch.mml2( dat2, est.a=rep(1,I) )
summary(mod2)

# collect item parameters
dfr1 <- data.frame( "study1", mod1$item$item, mod1$item$a, mod1$item$b )
dfr2 <- data.frame( "study2", mod2$item$item, mod2$item$a, mod2$item$b )
colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" )
itempars <- rbind( dfr1, dfr2 )

# Haberman linking
linkhab1 <- sirt::linking.haberman(itempars=itempars)
  ## Transformation parameters (Haberman linking)
  ##    study    At     Bt
  ## 1 study1 1.000  0.000
  ## 2 study2 1.465 -0.512
  ##
  ## Linear transformation for item parameters a and b
  ##    study   A_a   A_b    B_b
  ## 1 study1 1.000 1.000  0.000
  ## 2 study2 0.682 1.465 -0.512
  ##
  ## Linear transformation for person parameters theta
  ##    study A_theta B_theta
  ## 1 study1   1.000   0.000
  ## 2 study2   1.465   0.512
  ##
  ## R-Squared Measures of Invariance
  ##        slopes intercepts
  ## R2          1     0.9979
  ## sqrtU2      0     0.0456

#*** Model 2: 2PL
# 2PL Study 1
mod1 <- sirt::rasch.mml2( dat1, est.a=1:I )
summary(mod1)
# 2PL Study 2
mod2 <- sirt::rasch.mml2( dat2, est.a=1:I )
summary(mod2)

# collect item parameters
dfr1 <- data.frame( "study1", mod1$item$item, mod1$item$a, mod1$item$b )
dfr2 <- data.frame( "study2", mod2$item$item, mod2$item$a, mod2$item$b )
colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" )
itempars <- rbind( dfr1, dfr2 )

# Haberman linking
linkhab2 <- sirt::linking.haberman(itempars=itempars)
  ## Transformation parameters (Haberman linking)
  ##    study    At     Bt
  ## 1 study1 1.000  0.000
  ## 2 study2 1.468 -0.515
  ##
  ## Linear transformation for item parameters a and b
  ##    study   A_a   A_b    B_b
  ## 1 study1 1.000 1.000  0.000
  ## 2 study2 0.681 1.468 -0.515
  ##
  ## Linear transformation for person parameters theta
  ##    study A_theta B_theta
  ## 1 study1   1.000   0.000
  ## 2 study2   1.468   0.515
  ##
  ## R-Squared Measures of Invariance
  ##        slopes intercepts
  ## R2     0.9984     0.9980
  ## sqrtU2 0.0397     0.0443

#############################################################################
# EXAMPLE 4: 3 Studies - 1PL and 2PL linking
#############################################################################
set.seed(789)
I <- 20         # number of items
N <- 1500       # number of persons
# define item parameters
b <- seq( -1.5, 1.5, length=I )
# simulate data
dat1 <- sirt::sim.raschtype( stats::rnorm( N, mean=0, sd=1), b=b )
dat2 <- sirt::sim.raschtype( stats::rnorm( N, mean=0.5, sd=1.50), b=b )
dat3 <- sirt::sim.raschtype( stats::rnorm( N, mean=-0.2, sd=0.8), b=b )
# set some items to non-administered
dat3 <- dat3[, -c(1,4) ]
dat2 <- dat2[, -c(1,2,3) ]

#*** Model 1: 1PL in sirt
# 1PL Study 1
mod1 <- sirt::rasch.mml2( dat1, est.a=rep(1,ncol(dat1)) )
summary(mod1)
# 1PL Study 2
mod2 <- sirt::rasch.mml2( dat2, est.a=rep(1,ncol(dat2)) )
summary(mod2)
# 1PL Study 3
mod3 <- sirt::rasch.mml2( dat3, est.a=rep(1,ncol(dat3)) )
summary(mod3)

# collect item parameters
dfr1 <- data.frame( "study1", mod1$item$item, mod1$item$a, mod1$item$b )
dfr2 <- data.frame( "study2", mod2$item$item, mod2$item$a, mod2$item$b )
dfr3 <- data.frame( "study3", mod3$item$item, mod3$item$a, mod3$item$b )
colnames(dfr3) <- colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" )
itempars <- rbind( dfr1, dfr2, dfr3 )

# use person parameters
personpars <- list( mod1$person[, c("EAP","SE.EAP") ], mod2$person[, c("EAP","SE.EAP") ],
    mod3$person[, c("EAP","SE.EAP") ] )

# Haberman linking
linkhab1 <- sirt::linking.haberman(itempars=itempars, personpars=personpars)
# compare item parameters
round( cbind( linkhab1$joint.itempars[,-1], linkhab1$b.trans )[1:5,], 3 )
  ##            aj     bj study1 study2 study3
  ##   I0001 0.998 -1.427 -1.427     NA     NA
  ##   I0002 0.998 -1.290 -1.324     NA -1.256
  ##   I0003 0.998 -1.140 -1.068     NA -1.212
  ##   I0004 0.998 -0.986 -1.003 -0.969     NA
  ##   I0005 0.998 -0.869 -0.809 -0.872 -0.926

# summary of person parameters of second study
round( psych::describe( linkhab1$personpars[[2]] ), 2 )
  ##   var    n mean   sd median trimmed  mad   min  max range  skew kurtosis
  ## EAP      1 1500 0.45 1.36   0.41    0.47 1.52 -2.61 3.25  5.86 -0.08    -0.62
  ## SE.EAP   2 1500 0.57 0.09   0.53    0.56 0.04  0.49 0.84  0.35  1.47     1.56
  ##          se
  ## EAP    0.04
  ## SE.EAP 0.00

#*** Model 2: 2PL in TAM
library(TAM)
# 2PL Study 1
mod1 <- TAM::tam.mml.2pl( resp=dat1, irtmodel="2PL" )
pvmod1 <- TAM::tam.pv(mod1, ntheta=300, normal.approx=TRUE) # draw plausible values
summary(mod1)
# 2PL Study 2
mod2 <- TAM::tam.mml.2pl( resp=dat2, irtmodel="2PL" )
pvmod2 <- TAM::tam.pv(mod2, ntheta=300, normal.approx=TRUE)
summary(mod2)
# 2PL Study 3
mod3 <- TAM::tam.mml.2pl( resp=dat3, irtmodel="2PL" )
pvmod3 <- TAM::tam.pv(mod3, ntheta=300, normal.approx=TRUE)
summary(mod3)

# collect item parameters
#!!  Note that in TAM the parametrization is a*theta - b while linking.haberman
#!!  needs the parametrization a*(theta-b)
dfr1 <- data.frame( "study1", mod1$item$item, mod1$B[,2,1], mod1$xsi$xsi / mod1$B[,2,1] )
dfr2 <- data.frame( "study2", mod2$item$item, mod2$B[,2,1], mod2$xsi$xsi / mod2$B[,2,1] )
dfr3 <- data.frame( "study3", mod3$item$item, mod3$B[,2,1], mod3$xsi$xsi / mod3$B[,2,1] )
colnames(dfr3) <- colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" )
itempars <- rbind( dfr1, dfr2, dfr3 )

# define list containing person parameters
personpars <- list(  pvmod1$pv[,-1], pvmod2$pv[,-1], pvmod3$pv[,-1] )

# Haberman linking
linkhab2 <- sirt::linking.haberman(itempars=itempars,personpars=personpars)
  ##   Linear transformation for person parameters theta
  ##      study A_theta B_theta
  ##   1 study1   1.000   0.000
  ##   2 study2   1.485   0.465
  ##   3 study3   0.786  -0.192

# extract transformed person parameters
personpars.trans <- linkhab2$personpars

#############################################################################
# EXAMPLE 5: Linking with simulated item parameters containing outliers
#############################################################################

# simulate some parameters
I <- 38
set.seed(18785)
b <- stats::rnorm( I, mean=.3, sd=1.4 )
# simulate DIF effects plus some outliers
bdif <- stats::rnorm(I,mean=.4,sd=.09)+( stats::runif(I)>.9 )* rep( 1*c(-1,1)+.4, each=I/2 )
# create item parameter table
itempars <- data.frame( "study"=paste0("study",rep(1:2, each=I)),
                "item"=paste0( "I", 100 + rep(1:I,2) ), "a"=1,
                 "b"=c( b, b + bdif  )  )

#*** Model 1: Haberman linking with least squares regression
mod1 <- sirt::linking.haberman( itempars=itempars )
summary(mod1)

#*** Model 2: Haberman linking with robust bisquare regression with fixed trimming value
mod2 <- sirt::linking.haberman( itempars=itempars, estimation="BSQ", b_trim=.4)
summary(mod2)

#*** Model 2: Haberman linking with robust bisquare regression with estimated trimming value
mod3 <- sirt::linking.haberman( itempars=itempars, estimation="BSQ")
summary(mod3)

## see also Example 3 of ?sirt::robust.linking

#############################################################################
# EXAMPLE 6: Toy example of Magis and De Boeck (2012)
#############################################################################

# define item parameters from Magis & De Boeck (20212, p. 293)
b1 <- c(1,1,1,1)
b2 <- c(1,1,1,2)
itempars <- data.frame(study=rep(1:2, each=4), item=rep(1:4,2), a=1, b=c(b1,b2) )

#- Least squares regression
mod1 <- sirt::linking.haberman( itempars=itempars, estimation="OLS")
summary(mod1)

#- Bisquare regression with estimated and fixed trimming factors
mod2 <- sirt::linking.haberman( itempars=itempars, estimation="BSQ")
mod2a <- sirt::linking.haberman( itempars=itempars, estimation="BSQ", b_trim=.4)
mod2b <- sirt::linking.haberman( itempars=itempars, estimation="BSQ", b_trim=1.2)
summary(mod2)
summary(mod2a)
summary(mod2b)

#- Least squares trimmed regression
mod3 <- sirt::linking.haberman( itempars=itempars, estimation="LTS")
summary(mod3)

#- median regression
mod4 <- sirt::linking.haberman( itempars=itempars, estimation="MED")
summary(mod4)

#############################################################################
# EXAMPLE 7: Simulated example with directional DIF
#############################################################################

set.seed(98)
I <- 8
mu <- c(-.5, 0, .5)
b <- sample(seq(-1.5,1.5, len=I))
sd_dif <- 0.001
pars <- outer(b, mu, "+") + stats::rnorm(I*3, sd=sd_dif)
ind <- c(1,2); pars[ind,1] <- pars[ind,1] + c(.5,.5)
ind <- c(3,4); pars[ind,2] <- pars[ind,2] + (-1)*c(.6,.6)
ind <- c(5,6); pars[ind,3] <- pars[ind,3] + (-1)*c(1,1)

# median polish (=stats::medpolish())
tmod1 <- sirt:::L1_polish(x=pars)
# L0 polish with tolerance criterion of .3
tmod2 <- sirt::L0_polish(x=pars, tol=.3)

#- prepare itempars input
itempars <- sirt::linking_haberman_itempars_prepare(b=pars)

#- compare different estimation functions for Haberman linking
mod01 <- sirt::linking.haberman(itempars, estimation="L1")
mod02 <- sirt::linking.haberman(itempars, estimation="L0", b_trim=.3)
mod1 <- sirt::linking.haberman(itempars, estimation="OLS")
mod2 <- sirt::linking.haberman(itempars, estimation="BSQ")
mod2a <- sirt::linking.haberman(itempars, estimation="BSQ", b_trim=.4)
mod3 <- sirt::linking.haberman(itempars, estimation="MED")
mod4 <- sirt::linking.haberman(itempars, estimation="LTS")
mod5 <- sirt::linking.haberman(itempars, estimation="HUB")
mod01$transf.pars
mod02$transf.pars
mod1$transf.pars
mod2$transf.pars
mod2a$transf.pars
mod3$transf.pars
mod4$transf.pars
mod5$transf.pars

#############################################################################
# EXAMPLE 8: Many studies and directional DIF
#############################################################################

set.seed(98)
I <- 10 # number of items
S <- 7  # number of studies
mu <- round( seq(0, 1, len=S))
b <- sample(seq(-1.5,1.5, len=I))
sd_dif <- 0.001
pars0 <- pars <- outer(b, mu, "+") + stats::rnorm(I*S, sd=sd_dif)

# select n_dif items at random per group and set it to dif or -dif
n_dif <- 2
dif <- .6
for (ss in 1:S){
    ind <- sample( 1:I, n_dif )
    pars[ind,ss] <- pars[ind,ss] + dif*sign( runif(1) - .5 )
}

# check DIF
pars - pars0

#* estimate models
itempars <- sirt::linking_haberman_itempars_prepare(b=pars)
mod0 <- sirt::linking.haberman(itempars, estimation="L0", b_trim=.2)
mod1 <- sirt::linking.haberman(itempars, estimation="OLS")
mod2 <- sirt::linking.haberman(itempars, estimation="BSQ")
mod2a <- sirt::linking.haberman(itempars, estimation="BSQ", b_trim=.4)
mod3 <- sirt::linking.haberman(itempars, estimation="MED")
mod3a <- sirt::linking.haberman(itempars, estimation="L1")
mod4 <- sirt::linking.haberman(itempars, estimation="LTS")
mod5 <- sirt::linking.haberman(itempars, estimation="HUB")
mod0$transf.pars
mod1$transf.pars
mod2$transf.pars
mod2a$transf.pars
mod3$transf.pars
mod3a$transf.pars
mod4$transf.pars
mod5$transf.pars

#* compare results with Haebara linking
mod11 <- sirt::linking.haebara(itempars, dist="L2")
mod12 <- sirt::linking.haebara(itempars, dist="L1")
summary(mod11)
summary(mod12)

#############################################################################
# EXAMPLE 9: Haberman linking for polytomous data
#############################################################################

#* attach dataset involving two countries
data(data.timssAusTwn.scored, package="TAM")
dat <- data.timssAusTwn.scored
items <- grep("M0", colnames(dat), value=TRUE)

#* separate scaling with the generalized partial credit model (GPCM)
mod2a <- TAM::tam.mml.2pl( dat[dat$IDCNTRY==36,items], irtmodel="GPCM")
mod2b <- TAM::tam.mml.2pl( dat[dat$IDCNTRY==158,items], irtmodel="GPCM")

#* function for extracting item parameters of the GPCM
extract_gpcm_pars <- function(mod, study)
{
    # extract slope parameter
    a <- mod$B[,2,1]
    # maximum score
    K <- rowSums( 1-is.na( mod$AXsi[,-1] ) )
    # extract xsi
    xsi <- mod$xsi
    a1 <- rep( a, K )
    res <- data.frame( study=study, item=rownames(xsi), a=a1, b=xsi[,1] / a1 )
    return(res)
}

itempars1 <- extract_gpcm_pars(mod=mod2a, study="CNT036")
itempars2 <- extract_gpcm_pars(mod=mod2b, study="CNT158")
itempars <- rbind(itempars1, itempars2)

#* apply Haberman linking
lmod1 <- sirt::linking.haberman(itempars=itempars)
lmod1$transf.personpars
}